Bài tập chứng minh đẳng thức vectơ cực hay, có lời giải
Với Bài tập chứng minh đẳng thức vectơ cực hay, có lời giải Toán học lớp 11 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Bài tập chứng minh đẳng thức vectơ cực hay, có lời giải.
Bài tập chứng minh đẳng thức vectơ cực hay, có lời giải
A. Phương pháp giải
+ Để chứng minh các đẳng thức vecto ta cần sử dụng các quy tắc ba điểm; quy tắc hình hộp; quy tắc hình bình hành; tính chất trọng tâm tam giác hay hệ thức trung điểm đoạn thẳng...
+ Biến đổi vế phức tạp thành vế đơn giản còn lại hoặc chứng minh cả hai vế cùng bằng một biểu thức vecto khác.
B. Ví dụ minh họa
Ví dụ 1: Cho hình hộp ABCD. A’B’C’D’ tâm O. Khẳng định nào dưới đây là sai ?
Hướng dẫn giải
Dựa vào đáp án, ta thấy rằng:
Chọn C
Ví dụ 2: Cho hình hộp ABCD.A1B1C1D1. Gọi M là trung điểm của AD. Khẳng định nào dưới đây là đúng ?
Hướng dẫn giải
Dựa vào đáp án, ta thấy rằng:
Chọn B
Ví dụ 3: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi G là trọng tâm của tam giác AB’C. Khẳng định nào dưới đây là đúng ?
A. AC'→ = 3AG→
B. AC'→ = 4AG→
C. BD'→ = 4BG→
D. BD'→ = 3BG→
Hướng dẫn giải
Cách 1. Gọi I là tâm của hình vuông ABCD ⇒ I là trung điểm của BD.
Ta có
Cách 2. Theo quy tắc hình hộp, ta có
Do G là trọng tâm của tam giác AB’C suy ra
Chọn D
Ví dụ 4: Cho hình hộp ABDC.A1B1C1D1. Khẳng định nào dưới đây là sai ?
Hướng dẫn giải
Dựa vào đáp án, ta thấy rằng:
Chọn D
Ví dụ 5: Cho hình lăng trụ tam giác ABC.A’B’C’. Đặt AA'→ = a→, AB→ = b→, AC→ = c→, BC→ = d→. Khẳng định nào dưới đây là đúng ?
Hướng dẫn giải
Ta có
Chọn C
Ví dụ 6: Cho hình lập phương ABCD.A’B’C’D’. Gọi O là tâm của hình lập phương. Khẳng định nào dưới đây là đúng ?
Hướng dẫn giải
Theo quy tắc hình hộp, ta có AC→ = AB→ + AD→ + AA'→
Mà O là trung điểm của AC’ suy ra
AO→ = (1/2).AC'→ = (1/2).(AB→ + AD→ + AA'→)
Chọn B.
Ví dụ 7: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ MN→ = k.(AC→ + BD→)
A. k = 1/2 B. k = 1/3 C. k = 3 D. k = 2
Hướng dẫn giải
Chọn A
C. Bài tập vận dụng
Câu 1: Gọi M; N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ IA→ + (2k - 1)IB→ + k.IC→ + ID→ = 0→
A. k = 2 B. k = 4 C. k = 1 D. k = 0
Câu 2: Gọi M, N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN và P là một điểm bất kỳ trong không gian. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ PI→ = k(PA→ + PB→ + PC→ + PD→)
A. k = 4 B. k = 1/2 C. k = 1/4 D. k = 2
Câu 3: Cho hình hộp ABCD.A1B1C1D1. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ
A, k = 4 B. k = 1 C. k = 0 D. k = 2
Câu 4: Cho hình hộp ABCD.A’B’C’D’. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ AC→ + BA'→ + k.(DB→ + C'D→) = 0→
A. k = 0 B. k = 1 C. k = 4 D. k = 2
Câu 5: Cho tứ diện ABCD và điểm G thỏa mãn GA→ + GB→ + GC→ + GD→ = 0→ (G là trọng tâm của tứ diện). Gọi Go là giao điểm của GA và mặt phẳng (BCD). Khẳng định nào dưới đây là đúng ?
Câu 6: Cho tứ diện ABCD . Gọi M; N lần lượt là trung điểm của AB, CD và G là trung điểm của MN. Khẳng định nào dưới đây là sai ?
Câu 7: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt SA→ = a→, SB→ = b→,SC→ = c→, SD→ = d→. Khẳng định nào dưới đây là đúng ?
Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là điểm thỏa mãn GS→ + GA→ + GB→ + GC→ + GD→ = 0→. Khẳng định nào dưới đây là đúng ?
A. G; S; O không thẳng hàng.
B. GS→ = 4OG→
C. GS→ = 5OG→
D. GS→ = 3