Viết phương trình tiếp tuyến đi qua một điểm

Với Cách viết phương trình tiếp tuyến đi qua một điểm Toán học lớp 11 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách viết phương trình tiếp tuyến đi qua một điểm.

858
  Tải tài liệu

Viết phương trình tiếp tuyến đi qua một điểm

A. Phương pháp giải & Ví dụ

Phương trình tiếp tuyến của đồ thị (C): y = f(x) đi qua điểm M(x1; y1)

Cách 1 :

- Phương trình đường thẳng (d) đi qua điểm M có hệ số góc là k có dạng :

y = k( x – x1) + y1.

- (d) tiếp xúc với đồ thị (C) tại N(x0; y0) khi hệ:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp áncó nghiệm xo

Cách 2 :

- Gọi N(x0; y0) là tọa độ tiếp điểm của đồ thị (C) và tiếp tuyến (d) qua điểm M, nên (d) cũng có dạng y = y’0(x – x0) + y0.

- (d) đi qua điểm nên có phương trình : y1 = y0'(x1 – x0) + y0     (*)

- Từ phương trình (*) ta tìm được tọa độ điểm N(x0; y0) , từ đây ta tìm được phương trình đường thẳng (d)

Ví dụ minh họa

Bài 1: Cho hàm số y = x3 – 2x2 + (m – 1)x + 2m có đồ thị là (Cm). Tìm m để từ điểm M(1; 2) vẽ đến (Cm) đúng hai tiếp tuyến.

Hướng dẫn:

Ta có: y' = 3x2 - 4x + m-1. Gọi A(a; b) là tọa độ tiếp điểm.

Phương trình tiếp tuyến Δ tại A:

y =(3a2-4a+m-1)(x-a) + a3-2x2+(m-1)a+2m

Vì M ∈ Δ ⇔2 = (3a2-4a+m-1)(1-a) + a3-2x2+(m-1)a+2m

⇔2a3+5a2-4a+3m-3 = 0      (*)

Yêu cầu bài toán tương đương với (*) có đúng hai nghiệm phân biệt. (1)

Xét hàm số: h(t) = 2t3+5t2-4t,   t∈R.

Ta có: h’(t) = 6t2+10t-4. Cho h’(t) = 0 ⇒Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bảng biến thiên

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Dựa vào bảng biến thiên, suy ra (1)

⇒ Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án là những giá trị cần tìm.

Bài 2: Viết phương trình tiếp tuyến của (C): y = x3 – 2x2 + x + 4 đi qua điểm M( -4; -24)

Hướng dẫn:

Ta có: y' = 3x2-4x+1. Gọi A(a; b) là tọa độ tiếp điểm

Phương trình tiếp tuyến Δ tại A:

y = (3a2-4a+1)(x-a)+a3-2a2+a+4

Vì A(-4; -24) ∈ Δ ⇔ -24 = (3a2-4a+1)(-4-a)+a3-2a2+a+4

⇔ -2a3-10a2+16a+24 = 0 ⇔ Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Với a = -6, phương trình tiếp tuyến cần tìm là: y = 133(x+6)-240 = 133x+508

Với a = 2, phương trình tiếp tuyến cần tìm là: y = 5(x-2)+6 = 5x-10

Với a = -1, phương trình tiếp tuyến cần tìm là: y = 8(x+1)+2 = 8x+10

Bài 3: Cho hàm số y = (1/3)x3-2x2+3x có đồ thị là (C). Tìm phương trình các đường thẳng đi qua điểm A(4/9; 4/3) và tiếp xúc với đồ thị (C) của hàm số.

Hướng dẫn:

Ta có: y' = x2-4x+3. Gọi A(a; b) là tọa độ tiếp điểm.

Phương trình tiếp tuyến Δ tại A:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Với a = 0, phương trình tiếp tuyến cần tìm là: y = 3x

Với a = 1, phương trình tiếp tuyến cần tìm là: y = 4/3

Với a = 8/3, phương trình tiếp tuyến cần tìm là: y = (-5/9)x + 128/81

Bài 4: Viết phương trình tiếp tuyến của đồ thị hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án, biết tiếp tuyến đi qua điểm M(6;4)

Hướng dẫn:

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Gọi A(a; b) là tọa độ tiếp điểm

Phương trình tiếp tuyến Δ tại A:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Với a = 0, phương trình tiếp tuyến cần tìm là: y = (3/4)x - 1/2

Với a = 3, phương trình tiếp tuyến cần tìm là: y = 4

Bài 5: Viết phương trình tiếp tuyến d với đồ thị (C): Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp ánbiết d đi qua điểm A(-6; 5)

Hướng dẫn:

Ta có: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Gọi A(a; b) là tọa độ tiếp điểm.

Phương trình tiếp tuyến Δ tại A:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Với a = 0, phương trình tiếp tuyến cần tìm là: y = -x-1

Với a = 6, phương trình tiếp tuyến cần tìm là: y = (-1/4)(x-6) + 2 = (-1/4)x + 7/2

Bài 6: Cho hàm số y = 2x3 - 3x2 + 5 có đồ thị là (C). Tìm phương trình các đường thẳng đi qua điểm A (19/12; 4) và tiếp xúc với đồ thị (C) của hàm số.

Hướng dẫn:

Hàm số đã cho xác định D = R

Ta có: y’ = 6x2 – 6x

Gọi M(x0; y0)∈(C)⇔ y0 = 2x03 - 3x02 + 5 và y'(x0) = 6x02 - 6x0

Phương trình tiếp tuyến Δ của (C) tại M có dạng:

      y – y0 = y’(x0)(x – x0)

⇔ y - 2x03 + 3x02 - 5 = (6x02 - 6x0)(x - x0 )

⇔ (6x02- 6x0)x - 4x03 + 3x03 + 5 = y

A ∈ Δ ⇔4 =(6x02 - 6x0).(19/12) - 4x03 + 3x03 + 5

⇔8x03 - 25x02 + 19x0 - 2 = 0

⇔x0 = 1 hoặc x0 = 2 hoặc x0 = 1/8

Với x0 = 1 ⇒ Δ:y = 4

Với x0 = 2 ⇒ Δ:y = 12x - 15

Với x0 = 1/8 ⇒ Δ:y = (-21/32)x + 645/128

Bài 7: Cho hàm số: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp áncó đồ thị là (C) và điểm A(0; m). Xác định m để từ A kẻ được 2 tiếp tuyến đến (C) sao cho hai tiếp điểm tương ứng nằm về hai phía đối với trục Ox.

Hướng dẫn:

TXĐ: D = R\{1}

Gọi điểm M(x0; y0).

Ta có y’ = -3/(x-1)2

Tiếp tuyến Δ tại M của (C) có phương trình:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vì tiếp tuyến qua A(0; m) nên ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Yêu cầu bài toán ⇔ (*) có hai nghiệm a, b khác 1 sao cho

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Khi đó:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có: (*) có hai nghiệm a, b khác 1 sao cho

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy 1 ≠ m > (-2/3) là những giá trị cần tìm

Hỏi đáp VietJack

B. Bài tập vận dụng

Bài 1: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp áncó đồ thị (C). Phương trình tiếp tuyến của (C) đi qua điểm A(- 1; 0) là:

A.y = (3/4)x

B. y = (3/4)(x+1)

C. y = 3(x + 1)

D. y = 3x + 1

Bài 2: Qua điểm A(0; 2) có thể kẻ được bao nhiêu tiếp tuyến với đồ thị của hàm số y = x4 - 2x2 + 2

A. 2                B. 3                C. 0                D. 1

Bài 3: Cho hàm số y = x3 – 6x2 + 9x – 1 có đồ thị là (C). Từ một điểm bất kì trên đường thẳng x = 2 kẻ được bao nhiêu tiếp tuyến đến (C):

A. 2                B. 1                C. 3                D. 0

Bài 4: Đường thẳng y = 3x + m là tiếp tuyến của đồ thị hàm số y = x3 + 2 khi m bằng

A. 1 hoặc -1

B. 4 hoặc 0

C. 2 hoặc -2

D.3 hoặc -3

Bài 5: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp ánViết phương trình tiếp tuyến của (C), biết tiếp tuyến đi qua điểm A(4; 3)

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 6: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua A( - 7; 5).

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 7: Định m để đồ thị hàm số y = x3 – mx2 + 1 tiếp xúc với đường thẳng d: y = 5?

A. m = -3                B. m = 3                C. m = -1                D. m = 2

Bài 8: Phương trình tiếp tuyến của (C): y = x3 biết nó đi qua điểm M(2; 0) là:

A. y = 27x ± 54

B. y = 27x – 9; y = 27x – 2

C. y = 27x ± 27

D. y = 0; y = 27x – 54

Bài 9: Cho hàm số y = x2 – 5x – 8 có đồ thị (C). Khi đường thẳng y = 3x + m tiếp xúc với (C) thì tiếp điểm sẽ có tọa độ là:

A. M(4; 12)             B. M(- 4; 12)             C. M(-4; - 12)             D. M( 4; - 12)

Bài 10: Cho hàm số y = - x4 + 2x2 có đồ thị (C). Xét hai mệnh đề:

(I) Đường thẳng Δ: y = 1 là tiếp tuyến với (C) tại M(-1; 1) và tại N(1; 1)

(II) Trục hoành là tiếp tuyến với (C) tại gốc toạ độ

Mệnh đề nào đúng?

A. Chỉ (I)

B. Chỉ (II)

C. Cả hai đều sai

D. Cả hai đều đúng

Bài 11: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án có đồ thị (C). Từ điểm M(2; -1) có thể kẻ đến (C) hai tiếp tuyến phân biệt. Hai tiếp tuyến này có phương trình:

A. y = -x + 1 và y = x – 3

B. y = 2x – 5 và y = -2x + 3

C. y = -x – 1 và y = - x + 3

D. y = x + 1 và y = - x – 3

Bài 12: Cho hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp ántiếp tuyến của đồ thị hàm số kẻ từ điểm (-6; 5) là

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 13: Tiếp tuyến kẻ từ điểm (2; 3) tới đồ thị hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án là:

A. y = -28x + 59; y = x + 1

B. y = -24x + 51; y = x + 1

C. y = -28x + 59

D. y = - 28x + 59; y = -24x + 51

Bài 14: Cho hàm số y = x3 + 3x2 – 6x + 1 (C). Tìm phương trình tiếp tuyến của đồ thị (C) trong các phương trình sau, biết tiếp tuyến đi qua điểm N(0; 1).

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 15: Cho hàm số y = x4 + x2 + 1 (C). Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến đi qua điểm M(-1; 3).

A. y = -6x – 2

B. y = -6x – 9

C. y = -6x – 3

D. y = -6x – 8

 

Bài viết liên quan

858
  Tải tài liệu