Tìm ảnh của một điểm qua phép đối xứng trục cực hay
Với Cách tìm ảnh của một điểm qua phép đối xứng trục cực hay Toán học lớp 11 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách tìm ảnh của một điểm qua phép đối xứng trục cực hay.
Tìm ảnh của một điểm qua phép đối xứng trục cực hay
A. Phương pháp giải
Biểu thức tọa độ:
Trong hệ trục tọa độ Oxy
B. Ví dụ minh họa
Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho phép đối xứng trục Đa, với a là đường thẳng có phương trình: 2x - y = 0. Lấy A(2;2); tìm ảnh của A qua phép đối xứng trục a.
Hướng dẫn giải:
Ví dụ 2: Trong mặt phẳng tọa độ Oxy cho điểm M(2;3). Tìm ảnh của điểm M qua phép đối xứng trục Ox.
Hướng dẫn giải:
Biểu thức tọa độ qua phép đối xứng trục Ox:
Với mỗi M(x;y) gọi M' = DOx(M) = (x';y') thì
Ví dụ 3: Trong mặt phẳng tọa độ Oxy cho điểm A(3;5). Tìm ảnh của điểm M qua phép đối xứng trục Ox.
Hướng dẫn giải:
Ta có:
C. Bài tập trắc nghiệm
Câu 1. Trong mặt phẳng Oxy, cho điểm M(2;3). Hỏi M là ảnh của điểm nào trong các điêm sau qua phép đối xứng trục Oy?
A. (3;2)
B. (2;-3)
C. (3;-2)
D. (-2;3)
Câu 2. Trong mặt phẳng Oxy, cho điêm M(2;3). Hỏi trong trong các điểm sau, điểm nào là ảnh của M qua phép đôi xứng qua đường thắng d:x - y = 0?
A. (3;2)
B. (2;-3)
C. (3;-2)
D. (-2;3)
Câu 3. Trong mặt phẳng tọa độ Oxy, nếu phép đối xứng trục biến điểm M(2;3) thành M'(3;2) thì nó biến điểm C(1;-6) thành điểm:
A. C'(4;16).
B. C'(1;6).
C. C'(-6;-1).
D. C'(-6;1).
Câu 4. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(1;5), B(-1;2), C(6;-4). Gọi G là trọng tâm của tam giác ABC. Phép đối xứng trục DOy biến điểm G thành điểm G' có tọa độ là:
A. (-2;-1).
B. (2;-4).
C. (0;-3).
D. (-2;1).
Câu 5. Trong mặt phẳng tọa độ Oxy, phép đối xứng trục biến điểm A(2;1) thành A'(2;5) có trục đối xứng là:
A. Đường thẳng y = 3.
B. Đường thẳng x = 3.
C. Đường thẳng y = 6.
D. Đường thẳng x + y - 3 = 0.
Câu 6. Trong mặt phẳng tọa độ Oxy, cho hai điểm M(1;3) và M'(-1;1).Phép đối xứng trục Đa biến điểm M thành M'. Khi đó trục a có phương trình:
A. x - y + 2 = 0.
B. x - y - 2 = 0.
C. x + y + 2 = 0.
D. x + y - 2 = 0.
Câu 7. Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép đối xứng trục Ox, với M(x;y) gọi M'là ảnh của M qua phép đôi xứng trục Ox. Khi đó tọa độ điềm M'là:
A. M'(x;y)
B. M'(-x;y)
C. M'(-x;-y)
D. M'(x;-y)
Câu 8. Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép đối xứng trục Oy, với M(x;y) gọi M'là ánh của M qua phép đối xứng trục Oy Khi đó tọa độ điềm M'là:
A. M'(x;y)
B. M'(-x;y)
C. M'(-x;-y)
D. M'(x;-y)
Câu 9. Trong mặt phẳng Oxy, ảnh của điểm M(-2;3) qua phép đối xứng trục Δ: x + y = 0 là
A. M'(3;2).
B. M'(-3;-2).
C. M'(3;-2).
D. M'(-3;2).
Câu 10. Trong mặt phẳng tọa độ Oxy, qua phép đối xứng trục Oy, điểm A(3;5) biến thành điểm nào trong các điểm sau?
A. A1'(3;5).
B. A2'(-3;5).
C. 3y' - 4x' + 5 = 0.
D. A4'(-3;-5).