Cách tìm giới hạn của dãy số bằng định nghĩa cực hay
Với Cách tìm giới hạn của dãy số bằng định nghĩa cực hay Toán học lớp 11 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách tìm giới hạn của dãy số bằng định nghĩa cực hay.
Cách tìm giới hạn của dãy số bằng định nghĩa cực hay
A. Phương pháp giải & Ví dụ
- Để chứng minh limun = 0 ta chứng minh với mọi số a > 0 nhỏ tùy ý luôn tồn tại một số na sao cho |un| na.
- Để chứng minh limun = 1 ta chứng minh lim(un-1) = 0.
- Để chứng minh limun = +∞ ta chứng minh với mọi số M > 0 lớn tùy ý, luôn tồn tại số tự nhiên nM sao cho un > M ∀n > nM.
- Để chứng minh limun = -∞ ta chứng minh lim(-un) = +∞
- Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất.
Ví dụ minh họa
Bài 1: Chứng minh các giới hạn sau:
Hướng dẫn:
1. Với mọi số thực dương M lớn tùy ý, ta có:
Ta chọn
Do đó:
2. Với mọi M > 0 lớn tùy ý, ta có:
Ta chọn
Do đó:
Bài 2: Chứng minh rằng dãy số (un): un = (-1)n không có giới hạn.
Hướng dẫn:
Ta có: u2n → +∞; u(2n+1) = -(2n+1) → -∞
Do đó dãy số đã cho không có giới hạn.
Bài 3: Chứng minh các giới hạn sau:
Hướng dẫn:
1. Gọi m là số tự nhiên thỏa: m+1 > |a|. Khi đó với mọi n > m+1
Ta có:
Mà Từ đó suy ra:
2. Nếu a = 1 thì ta có đpcm
+ Giả sử a > 1. Khi đó:
+
Tóm lại ta luôn có: với a > 0.
Bài 4: Chứng minh các giới hạn sau
Hướng dẫn:
1. Với mọi a > 0 nhỏ tùy ý, ta chọn
2. Ta có
3. Với mọi số thực a > 0 nhỏ tùy ý, ta chọn
Ta có:
Bài 5: Chứng minh rằng:
Hướng dẫn:
1. Với a > 0 nhỏ tùy ý, ta chọn
Ta có:
2. Với a > 0 nhỏ tùy ý, ta chọn
Ta có:
Bài 6: Chứng minh rằng:
Hướng dẫn:
1. Với a > 0 nhỏ tùy ý, ta chọn
Ta có:
2. Với a > 0 nhỏ tùy ý, ta chọn
Ta có:
3. Với a > 0 nhỏ tùy ý, ta chọn
Ta có:
Bài 7: Chứng minh rằng dãy số (un ) : un = (-1)n không có giới hạn.
Hướng dẫn:
Ta có: u2n = 1 ⇒ limu2n = 1; u(2n+1) = -1 ⇒ limu(2n+1) = -1
Vì giới hạn của dãy số nếu có là duy nhất nên ta suy ra dãy (un) không có giới hạn.
Bài 8: Dùng định nghĩa tìm các giới hạn sau :
Hướng dẫn:
1. Với số thực a > 0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A = 2
2. Với số thực a > 0 nhỏ tùy ý, ta chọn na thỏa mãn
3. Với số thực a > 0 nhỏ tùy ý, ta chọn
Ta có:
Vậy C = 1
B. Bài tập vận dụng
Bài 1: có giá trị bằng:
Bài 2: Dãy số nào sau đây có giưới hạn là +∞ ?
A. un = 9n2 - 2n5
B. un = n4 - 4n5
C. un = 4n2 - 3n
D. un = n3 - 5n4
Bài 3: Nếu limun = L, un + 9 > 0 ∀n thì bằng số nào sau đây?
Bài 4: bằng:
A. 0 B.1 C. 2 D. +∞
Bài 5: bằng:
Bài 6: có giá trị bằng:
Bài 7: Dãy số nào sau đây có giới hạn khác 0 ?
Bài 8: Dãy số nào sau đây có giới hạn bằng 0 ?
Bài 9: bằng:
Bài 10: bằng:
Bài 11: bằng:
Bài 12: Dãy số nào sau đây có giưới hạn bằng 1/5 ?
Bài 13: có giá trị bằng:
Bài 14: lim(-3n3 + 2n2 - 5) bằng:
A. -3 B.0 C. -∞ D. +∞
Bài 15: Lim( 2n4 + 5n2 - 7n ) bằng:
A. -∞ B.0 C. 2 D. +∞