Cách tìm giới hạn của dãy số bằng định nghĩa cực hay

Với Cách tìm giới hạn của dãy số bằng định nghĩa cực hay Toán học lớp 11 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách tìm giới hạn của dãy số bằng định nghĩa cực hay.

817
  Tải tài liệu

Cách tìm giới hạn của dãy số bằng định nghĩa cực hay

A. Phương pháp giải & Ví dụ

- Để chứng minh limun = 0 ta chứng minh với mọi số a > 0 nhỏ tùy ý luôn tồn tại một số na sao cho |un| na.

- Để chứng minh limun = 1 ta chứng minh lim(un-1) = 0.

- Để chứng minh limun = +∞ ta chứng minh với mọi số M > 0 lớn tùy ý, luôn tồn tại số tự nhiên nM sao cho un > M ∀n > nM.

- Để chứng minh limun = -∞ ta chứng minh lim(-un) = +∞

- Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất.

Ví dụ minh họa

Bài 1: Chứng minh các giới hạn sau:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Với mọi số thực dương M lớn tùy ý, ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Do đó: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Với mọi M > 0 lớn tùy ý, ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Do đó: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Chứng minh rằng dãy số (un): un = (-1)n không có giới hạn.

Hướng dẫn:

Ta có: u2n → +∞; u(2n+1) = -(2n+1) → -∞

Do đó dãy số đã cho không có giới hạn.

Bài 3: Chứng minh các giới hạn sau:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Gọi m là số tự nhiên thỏa: m+1 > |a|. Khi đó với mọi n > m+1

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Mà Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án Từ đó suy ra: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Nếu a = 1 thì ta có đpcm

+ Giả sử a > 1. Khi đó:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Tóm lại ta luôn có: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án với a > 0.

Bài 4: Chứng minh các giới hạn sau

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Với mọi a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Với mọi số thực a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 5: Chứng minh rằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Với a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Với a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 6: Chứng minh rằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Với a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Với a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Với a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 7: Chứng minh rằng dãy số (un ) : un = (-1)n không có giới hạn.

Hướng dẫn:

Ta có: u2n = 1 ⇒ limu2n = 1; u(2n+1) = -1 ⇒ limu(2n+1) = -1

Vì giới hạn của dãy số nếu có là duy nhất nên ta suy ra dãy (un) không có giới hạn.

Bài 8: Dùng định nghĩa tìm các giới hạn sau :

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Với số thực a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy A = 2

2. Với số thực a > 0 nhỏ tùy ý, ta chọn na thỏa mãn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Với số thực a > 0 nhỏ tùy ý, ta chọn Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy C = 1

 

Hỏi đáp VietJack

B. Bài tập vận dụng

Bài 1: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án có giá trị bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Dãy số nào sau đây có giưới hạn là +∞ ?

A. un = 9n2 - 2n5

B. un = n4 - 4n5

C. un = 4n2 - 3n

D. un = n3 - 5n4

Bài 3: Nếu limun = L, un + 9 > 0 ∀n thì Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng số nào sau đây?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 4: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

A. 0         B.1         C. 2          D. +∞

Bài 5: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 6: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án có giá trị bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 7: Dãy số nào sau đây có giới hạn khác 0 ?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 8: Dãy số nào sau đây có giới hạn bằng 0 ?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 9: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 10: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 11: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 12: Dãy số nào sau đây có giưới hạn bằng 1/5 ?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 13: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án có giá trị bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 14: lim⁡(-3n3 + 2n2 - 5) bằng:

A. -3         B.0         C. -∞          D. +∞

Bài 15: Lim( 2n4 + 5n2 - 7n ) bằng:

A. -∞         B.0         C. 2          D. +∞

 

Bài viết liên quan

817
  Tải tài liệu