Cách tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác cực hay

Với Cách tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác cực hay Toán học lớp 11 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác cực hay.

1377
  Tải tài liệu

Cách tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác cực hay

A. Phương pháp giải

Để tìm được giá trị lớn nhất;giá trị nhỏ nhất của hàm số ta cần chú ý:

+ Với mọi x ta luôn có: - 1 ≤ cosx ≤ 1; -1 ≤ sinx ≤ 1

+Với mọi x ta có: 0 ≤ |cosx| ≤ 1 ;0 ≤ |sinx| ≤ 1

+ Bất đẳng thức bunhia –copski: Cho hai bộ số (a1; a2) và (b1;b2) khi đó ta có:

(a1.b1+ a2.b2 )2 ≤ ( a12+ a22 ).( b12+ b22 )

Dấu “=” xảy ra khi: a1/a2 = b1/b2

+ Giả sử hàm số y= f(x) có giá trị lớn nhất là M và giá trị nhỏ nhất là m. Khi đó; tập giá trị của hàm số là [m; M].

+ Phương trình : a. sinx+ b. cosx= c có nghiệm khi và chỉ khi a2 + b2 ≥ c2

Hỏi đáp VietJack

B. Ví dụ minh họa

Ví dụ 1: Tìm giá trị lớn nhất M, giá trị nhỏ nhất m của hàm số: y= 2018sin( 9x+π/100)+2000

A. m=18 ; M=4018

B. m = -18; M= 18

C. m=-18; M= 4018

D. Đáp án khác

Lời giải:

Chọn C

Hàm số xác định trên R.

Với mọi x ta có: - 1 ≤ sin( 9x+π/100) ≤ 1 nên - 2018 ≤ 2018sin( 9x+π/100) ≤ 2018

⇒ -18 ≤ 2018sin( 9x+π/100)+2000 ≤ 4018

⇒ giá trị nhỏ nhất của hàm số là -18 khi sin( 9x+π/100)=-1

Giá trị lớn nhất của hàm số là 4018 khi sin( 9x+π/100)=1

Ví dụ 2: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= ∜sinx- √cosx.

A. m= -1; M=1.

B. m = 0; M=1

C. m= -1;M=0

D. m= -1 và M không tồn tại.

Lời giải:

Chọn A

Với mọi x thỏa mãn điều kiện : sinx > 0 và cosx > 0 .Ta có:

Cách tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác cực hay - Toán lớp 11

Vậy hàm số đạt giá trị nhỏ nhất là m= – 1 khi: (sinx=0 và cosx=1 ⇒ x= k2π.

Hàm số đạt giá trị lớn nhất là M=1 khi (sinx=1 và cosx=0 ⇒ x= π/2+k2π.

Ví dụ 3. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số : y= cos2 x – 6cosx + 11. Tính M.m

A.30

B.36

C.27

D.24

Lời giải:

Ta có: cos2 x – 6cosx +11 = ( cos2x – 6cosx + 9) +2 = (cosx -3)2 + 2

Do - 1 ≤ cosx ≤ 1 ⇒ - 4 ≤ cosx-3 ≤ -2

⇒ 0 ≤ (cosx-3)^2 ≤ 16

⇒ 2 ≤ (cosx-3)^2+2 ≤ 18

Suy ra:M= 18 và m= 2 nên M. m= 36.

Chọn B.

Ví dụ 4. Gọi M và lần lượt là giá trị lớn nhất; giá trị nhỏ nhất của hàm số

y=(cosx+2sinx+3)/(2cosx-sinx+4). Tính S= M+11m

A.4

B.5

C. 6

D. 8

Lời giải:.

Gọi y0 là một giá trị của hàm số.

Khi đó phương trình y0=(cosx+2sinx+3)/(2cosx-sinx+4) có nghiệm.

⇒ y0.( 2cosx- sinx + 4) = cosx +2sinx + 3 có nghiệm

⇒ 2y0.cosx – sinx.y0 + 4y0- cosx – 2sinx – 3=0 có nghiệm

⇒ ( 2y0 -1)cosx – ( y0+2).sinx =3- 4y0 (*)

Phương trình (*) có nghiệm khi và chỉ khi :

(2y0-1)2 + ( y0 + 2)2 ≥ (3-4y0)2

⇒ 4y02 – 4y0 +1 +y02 +4y0 + 4 ≥ 9-24y0+16y02

⇒ 11y02 – 24y0 + 4 ≤ 0  2/11 ≤ y0 ≤ 2

Suy ra: M=2 và m=2/11 nên S= M+ 11m= 4

Chọn A.

Ví dụ 5. Cho hàm số y= √(1+2sin2 x)+ √(1+2〖cos2 x)-1. Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số. Khi đó; giá trị M+ m gần với giá trị nào nhất?

A. 3,23

B. 3,56

C. 2,78

D.2,13

Lời giải:

+ Xét t= √(1+2sin2 x)+ √(1+2cos2 x)

⇒ t2 = 1+ 2sin2 x+ 1+ 2cos2 x+ 2. √((1+2sin2 x).( 1+2cos2 x) )

=4+2√(3+ sin2 2x)

Mà sin22x ≥ 0 nên t2 ≥ 4+ 2√3

Mà t > 0 nên t ≥ √(4+2√3) =1+ √3

Suy ra: y= t-1 ≥ √3

Dấu “=” xảy ra khi sin2x=0 .

+ Lại có:

√(1+2sin2 x)+ √(1+2cos2 x) ≤ √((1^2+ 1^2 ).( 1+2sin2x+ 1+2cos2 x) )= 2√2

⇒ y= √(1+2sin2 x)+ √(1+2cos2 x)-1 ≤ 2√2-1

Dấu “=” xảy ra khi sin2 x= cos2x

Vậy {(m= √3 và M=2√2-1) ⇒ M+ m≈3,56

Chọn B.

Ví dụ 6: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= 4sinx - 3

A.M= 1; m= - 7

B. M= 7; m= - 1

C. M= 3; m= - 4

D. M=4; m= -3

Lời giải

Chọn A

Ta có : - 1 ≤ sinx ≤ 1 nên - 4 ≤ 4sinx ≤ 4

Suy ra : - 7 ≤ 4sinx-3 ≤ 1

Do đó : M= 1 và m= - 7

Ví dụ 7: Tìm tập giá trị T của hàm số y= -2cos2x + 10 .

A. [5; 9]

B.[6;10]

C. [ 8;12]

D. [10; 14]

Lời giải:

Chọn C

Với mọi x ta có : - 1 ≤ cos⁡2x ≤ 1 nên-2 ≤ -2cos2x ≤ 2

⇒ 8 ≤ -2cos2x+10 ≤ 12

Do đó tập giá trị của hàm số đã cho là : T= [ 8 ;12]

Ví dụ 8: Tính độ dài giá trị của hàm số y= 10- 2cos2x

A. 10

B. 8

C.6

D. 4

Lời giai

Với mọi x ta có: - 1 ≤ cos2x ≤ 1 nên-2 ≤ -2cos2x ≤ 2

Suy ra: 8 ≤ 10-2cos2x ≤ 12

Do đó; tập giá trị của hàm số đã cho là: [8; 12] và độ dài đoạn giá trị của hàm số là : 12 – 8= 4

Chọn D.

Ví dụ 9: Tính tổng giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số sau: y= √3 sin⁡( 2016x+2019)

A. - 4032

B. √3

C. -√3

D. 0

Lời giải:

Chọn D

Với mọi x ta có :- 1 ≤ sin⁡(2016x+2019) ≤ 1

⇒ -√3 ≤ √3sin⁡(2016x+2019) ≤ √3

Do đó giá trị nhỏ nhất của hàm số là -√3 và giá trị lớn nhất của hàm số là √3

⇒ Tổng giá trị lớn nhất và nhỏ nhất của hàm số là - √3+ √3=0

Ví dụ 10: Tìm giá trị nhỏ nhất m của hàm số y= 1/(1+sinx)

A. m= 1/2

B. m= 1/√2

C. m= 1

D. m= √2

Lời giải:

Chọn A

Điều kiện xác định : sinx ≠ -1 hay x ≠ (- π)/2+k2π

+ Với mọi x thỏa mãn điều kiện ta có : - 1 0

+ Nếu mẫu 1+ sinx > 0 thì hàm số đạt giá trị nhỏ nhất khi và chỉ khi 1+ sinx đạt giá trị lớn nhất

Hay 1+ sinx=2 < ⇒ sinx= 1( thỏa mãn điều kiện) .

Khi đó ymin = 1/2

Vậy hàm số đạt giá trị nhỏ nhất là 1/2 khi sinx= 1

Ví dụ 11. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= 1- 2|cos3x|.

A. M=3 ; m= - 1.

B. M= 1 ; m= -1.

C. M=2 ;m= -2.

D. M=0 ; m= -2.

Lời giải:.

Chọn B.

Với mọi x ta có : - 1 ≤ cos3x ≤ 1 nên 0 ≤ |cos3x| ≤ 1

⇒ 0 ≥ -2|cos3x| ≥ -2

Cách tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác cực hay - Toán lớp 11

Ví dụ 12: Hàm số y= 1+ 2cos2x đạt giá trị nhỏ nhất tại x= x0. Mệnh đề nào sau đây là đúng?

A.x0=π+k2π, kϵZ .

B.x0=π/2+kπ, kϵZ .

C.x0=k2π, kϵZ .

D.x0=kπ ,kϵZ .

Lời giải:.

Chọn B.

Ta có - 1 ≤ cosx ≤ 1 ⇒ - 0 ≤ cos2x ≤ 1 ⇒ 1 ≤ 1+2cos2x ≤ 3

Do đó giá trị nhỏ nhất của hàm số bằng 1 .

Dấu ‘=’ xảy ra khi cosx=0 ⇒ x=π/2+kπ, kϵZ .

Ví dụ 13: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= sin2x+ 2cos2x.

A.M= 3 ;m= 0

B. M=2 ; m=0.

C. M=2 ; m= 1.

D.M= 3 ; m= 1.

Lời giải:.

Chọn C.

Ta có: y = sin2 x+ 2cos2x = (sin2x+ cos2x) + cos2x = 1+ cos2 x.

Do: -1 ≤ cosx ≤ 1 nên 0 ≤ cos2 x ≤ 1 ⇒ 1 ≤ cos2 x+1 ≤ 2

Suy ra giá trị lớn nhất của hàm số là M= 2 và giá trị nhỏ nhất của hàm số là m= 1

C. Bài tập vận dụng

Câu 1:Giá trị nhỏ nhất của hàm số y= 4sin2 x+ 6cos2x+ 2 là

A. 4

B. 6

C. 8

D. 10

Câu 2:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau

A.max y=4,min y=3/4

B.max y=3,min y=2

C.max y=4,min y=2

D.max y=3,min y=3/4

Câu 3:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y = 3sinx + 4cosx + 1

A. max y=6,min y=-2

B. max y=4,min y=-44

C. max y=6,min y=-4

D.max y=6,min y=-1

Câu 4:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y=2sin2x+3sin2x-4cos2x

A. min y= -3√2 -1, max y=3√2 +1

B. min y= -3√2 -1, max y=3√2 -1

C. min y= -3√2 , max y=3√2 -1

D. min y= -3√2 -2, max y=3√2 -1

Câu 5:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=sin2x+3sin2x+3cos2x

A. min y= 2+√10 , max y=2-√10

B. min y= 2+√5, max y=2+√5

C. min y= 2+√2, max y=2-√2

D. min y= 2+√7, max y=2-√7

Câu 6:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y=sinx+ √(2-sin2)

A.min y= 0, max y=3

B.min y= 0, max y=4

C.min y= 0, max y=6

D.min y= 0, max y=2

Câu 7:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y=(sin2x+2cos2x+3)/(2sin2x-cos2x+4)

A. min y= -2/11, max y=2

B. min y= 2/11, max y=3

C. min y= 2/11, max y=4

D. min y= 2/11, max y=2

Câu 8:Gọi M; m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=8sin2x+3cos2x . Tính P= M- 2m.

A. P= - 1

B. P= 1

C. P= 2

D. P=0

Câu 9:Tìm giá trị lớn nhất M của hàm số y= 4sin2x + 3.cos2x .

A. M= 3

B. M= 1

C. M= 5

D. M= 4

Câu 10:Hàm số y= cos2x+ 2sinx+ 2 đạt giá trị nhỏ nhất tại x0. Mệnh đề nào sau đây là đúng.

A. x= (-π)/2+k2π.

B. x= π/2+k2π.

C. x= k π

D. x= k2π

Câu 11:Tìm giá trị lớn nhất M và nhỏ nhất m của hàm số y= sin4x -2 cos2x+ 1.

A.M= 2; m= - 2

B.M=1; m=0

C.M=4;m= - 1

D M=2;m= - 1

Câu 12:Tìm giá trị nhỏ nhất của hàm số y= 4sin4x – cos4x.

A. - 3

B. - 1

C. 3

D. 5

Câu 13:Gọi M ; m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= sin2x – 4sinx+ 5. Tính M+ m.

A.3

B.8

C.10

D.12

Câu 14:Cho hàm số y= cos2x- cosx có tập giá trị là T. Hỏi có tất cả bao nhiêu giá trị nguyên thuộc T.

A. 1

B. 2

C. 3

D. 4

Câu 15:Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= 2( sinx - cosx). Tính P= M+ 2m.

A. 2

B. - 2√2

C. - √2

D. 4√2

Câu 16:Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= √(1- cos2 x)+1là:

A. 2 và 1

B. 0 và 3

C. 1 và 3

D.1 và 1+ √2

Câu 17:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=(2sin23x+4sin3xcos3x+1)/(sin6x+4cos6x+10)

A. min y= (11-9√7)/83, max y=(11+9√7)/83

B. min y= (22-9√7)/11, max y=(22+9√7)/11

C. min y= (33-9√7)/83, max y=(33+9√7)/83

D. min y= (22-9√7)/83, max y=(22+9√7)/83

Bài viết liên quan

1377
  Tải tài liệu