Bài tập về cấp số nhân nâng cao cực hay có lời giải
Với Bài tập về cấp số nhân nâng cao cực hay có lời giải Toán học lớp 11 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Bài tập về cấp số nhân nâng cao cực hay.
Bài tập về cấp số nhân nâng cao cực hay có lời giải
A. Ví dụ minh họa
Ví dụ 1: Cho bốn số nguyên dương, trong đó ba số đầu lập thành một cấp số cộng, ba số hạng sau thành lập cấp số nhân. Biết rằng tổng của số hạng đầu và số hạng cuối là 37, tổng của hai số hạng giữa là 36. Tìm số hạng thứ tư.
Hướng dẫn giải:
Gọi bốn số nguyên dương cần tìm là: a, b, c, d.
* Theo đề bài có a, b, c là ba số hạng liên tiếp của cấp số cộng.
=> a + c = 2b (1)
* Ba số hạng b, c, d là ba số hạng liên tiếp của cấp số nhân.
=> bd = c2 ( 2)
* Theo giả thiết ta có hệ phương trình:
* Từ (4) có: b= 36- c thay vào (1) được:
a+ c = 72- 2c ⇔ a = 72- 3c, thay a vào (3) được:
d = 37- 72 + 3c ⇔ d = - 35 + 3c.
* Thay b, d vào (2) được:
Với c = 20 => b = 16,a = 12,d = 95.
Với ( loại- vì bốn số đó là các số nguyên dương)
Chọn B.
Ví dụ 2: Ba số khác nhau có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân hoặc là các số hạng thứ 2 thứ 9 và thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu tiên của cấp số cộng để tổng của chúng là 820?
Hướng dẫn giải:
Gọi u1; u2; u3 là ba số hạng liên tiếp của cấp số nhân, với công bội là q.
Theo đề bài u1 = a2, u2 = a9 , u3 = a44 với a2, a9, a44 là các số hạng của một cấp số cộng với công sai d.
Ta có
Lấy phương trình (1) – (2) được:
Vì u1; u2; u3 khác nhau nên chọn q= 5..
Theo đề bài có:
Mà q = 5 => u1 = 7
Suy ra u2 = u1q = 35.
Ta có
Theo đề bài ta có:Sn = 820 nên
Kết luận phải lấy 20 số hạng đầu tiên để tổng của chúng bằng 820.
Chọn A.
Ví dụ 3: Cho dãy số (un) thỏa mãn . Giá trị nhỏ nhất của n để là
Hướng dẫn giải:
Ta có
Đặt
=> (vn) là cấp số nhân với và công bội q= 3.
Suy ra:
Yêu cầu bài toán trở thành:
Vậy giá trị nhỏ nhất của n thỏa mãn bài toán là n = 146.
Chọn D.
Ví dụ 4: Cho dãy số (un) xác định bởi .Tính số hạng thứ 2018 của dãy.
Hướng dẫn giải:
Ta có
Đặt:
Khi đó ta được dãy mới; là cấp số nhân với : v1 = 6 và q = 2
Chọn D.
Ví dụ 5: Tính các cạnh của 1 hình hộp chữ nhật; biết thể tích của nó là a3 ; diện tích toàn phần là 6a2 và 3 cạnh lập thành cấp số nhân?
Hướng dẫn giải:
Gọi x;y;z là 3 canh của hình hộp chữ nhật.
Theo giả thiết ta có:
V=xyz nên
Do đó q = 1
Khi đó 3 cạnh của hình hộp chữ nhật là a;a;a.
Chọn D.
Ví dụ 6: Tìm a, b biết rằng 1,a,b là 3 số hạng liên tiếp của cấp số cộng và 1; a2; b2 là 3 số hạng liên tiếp của một cấp số nhân .Tính a+ b?
Hướng dẫn giải:
Theo đề bài ta có hệ phương trình:
Từ (2) suy ra: b = ± a2
* Với b = a2 thay vào (1) được :
*Với b = −a2 thay vào (1) được:
+ Nếu
Khi đó: a + b = −4 + 3√2
+ Nếu
Khi đó; a + b = −4 − 3√2
Chọn D.
Ví dụ 7: Cho bốn số hạng liên tiếp của một cấp số nhân, trong đó số hạng thứ hai nhỏ hơn số hạng thứ nhất 35, còn số hạng thứ ba lớn hơn số hạng thứ tư 560. Tìm số hạng thứ 4?
Hướng dẫn giải:
Theo đề bài ta có hệ phương trình:
Thay (1) vào (2) ta được:
* Với q= 4 thay vào (1) được
* Với q= - 4 thay vào (1) ta được :
Vậy số hạng thứ tư của cấp số nhân là:
Chọn D.
Ví dụ 8: Cho cấp số nhân (un) có u1 = 2 và u1 − 12u2 − 6u3 đạt giá trị lớn nhất. Tìm số hạng thứ 8 của cấp số nhân đã cho.
Hướng dẫn giải:
* Trước tiên ta đi tìm công bội của cấp số nhân.
Gọi q là công bội của cấp số nhân (un)
Ta có
Do đó để u1 − 12u2 − 6u3 đạt giá trị lớn nhất thì q = -1.
* Số hạng thứ 8 của cấp số nhân đã cho là: u8= u1.q7 = 2.(-1)7 = - 2.
Chọn C .
B. Bài tập trắc nghiệm
Câu 1: Một cấp số cộng và một cấp số nhân đều là các dãy tăng. Các số hạng thứ nhất của hai dãy số đều bằng 3; các số hạng thứ hai bằng nhau. Tỉ số giữa các số hạng thứ ba của cấp số nhân và cấp số cộng là . Tìm ba số hạng của cấp số nhân.
Câu 2: Ba số khác nhau có tổng bằng 114 là ba số hạng liên tiếp của một cấp số nhân, hoặc coi là số hạng thứ nhất, thứ tư và thứ hai mươi lăm của một cấp số cộng. Tìm số lớn nhất trong 3 số đó?
Câu 3: Có bao nhiêu giá trị của m để phương trình: x3 + (5 − m)x2 + (6 − 5m)x − 6m = 0 có 3 nghiệm phân biệt lập thành cấp số nhân ?
Câu 4: Cho dãy số (an) xác định bởi a1, an + 1 = q.an + 3 với mọi n ≥ 1 trong đó q là hằng số, a ≠ 0, q ≠ 1. Biết công thức số hạng tổng quát của dãy số viết được dưới dạng .Tính α + 2β
Câu 5: Cho a,b,c là ba số hạng liên tiếp của một cấp số cộng và b,c,a là ba số hạng liên tiếp của một cấp số nhân, đồng thời a.b.c= 125. Tính a. b
Câu 6: Cho ba số dương có tổng 65 lập thành một cấp số nhân tăng. Nếu bớt 1 đơn vị ở số hạng thứ nhất và 19 đơn vị ở số hạng thứ ba ta được một cấp số cộng. Tính tích của ba số đó?
Câu 7: Tìm công bội của một cấp số nhân có số hạng đầu là 7; số hạng cuối là 448 và tổng số các số hạng là 889.
Câu 8: Một cấp số cộng và cấp số nhân đều có số hạng đầu tiên là bằng 5, số hạng thứ hai của cấp số cộng lớn hơn số hạng thứ hai của cấp số nhân là 10, còn các số hạng thứ 3 của hai cấp số thì bằng nhau. Tìm số hạng thứ ba của cấp số nhân.
Câu 9: Ba số x, y, z theo thứ tự đó lập thành một cấp số nhân với công bội q (q ≠ 1), đồng thời các số x, 2y, 3z theo thứ tự đó lập thành một cấp số cộng với công sai d(d ≠ 0). Hãy tìm q?