Ứng dụng đạo hàm để giải phương trình, bất phương trình cực hay
Với Ứng dụng đạo hàm để giải phương trình, bất phương trình cực hay Toán học lớp 11 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Ứng dụng đạo hàm để giải phương trình, bất phương trình cực hay.
Ứng dụng đạo hàm để giải phương trình, bất phương trình cực hay
A. Phương pháp giải
+ Bước 1: Tính đạo hàm của hàm số.
+ Bước 2: Lập phương trình; bất phương trình.
+ Bước 3: Giải phương trình; bất phương trình.
B. Ví dụ minh họa
Ví dụ 1. Cho hàm số y= (2x-2)/(x-3). Giải phương trình y'= -4.
A .x= - 2 B. x= 4 hoặc x= 2 C. x= 2 D x= - 3
Hướng dẫn giải
Hàm số đã cho xác định với mọi x≠3.
Đạo hàm của hàm số đã cho với x≠3 là :
Ví dụ 2. Cho hàm số y= (x3+ x2)/(x-1). Phương trình y'=0 có mấy nghiệm nguyên?
A. 1 B. 0 C. 2 D. 3
Hướng dẫn giải
+ Hàm số đã cho có đạo hàm tại mọi điểm x≠1. Khi đó; đạo hàm của hàm số là:
Ví dụ 3. Cho hàm số y= 2mx – mx3. Với những giá trị nào của m để x= -1 là nghiệm của bất phương trình y'<1?
A. m > - 1 B. m < 1 C.m= 1 D. m < - 1
Hướng dẫn giải
Ta có đạo hàm: y’= 2m- 3mx2
Bất phương trình y' <1 khi 2m-3mx2 <1
Do x= -1 là nghiệm của bât phương trình nên ta có: 2m- 3m.(-1)2 < 1
⇔ - m < <1 hay m >- 1.
Chọn A.
Ví dụ 4. Cho hàm số y= x4+ 2x3 – k.x2+ x- 10. Tìm k để phương trình y'=1 có một nghiệm là x= 1?
A. k= 5 B. k= -5 C. k= 2 D. k= - 3
Hướng dẫn giải
+ Ta có đạo hàm: y'= 4x3+ 6x2 - 2kx+ 1.
+ Để y’= 1 thì 4x3+ 6x2 - 2kx+ 1 = 1
⇔ 4x3+ 6x2 – 2kx = 0. (*)
Do phương trình y’= 1 có một nghiệm là x= 1 nên phương trình (*) có một nghiệm x= 1. Suy ra: 4.13 + 6.12 – 2.k.1= 0 ⇔ 10- 2k = 0
⇔ k= 5.
Chọn A.
Ví dụ 5. Cho hàm số y= 4x+√x-10. Nghiệm của phương trình y'=0 là
A.x=1 B. x= 4 C. x= 9 D. Vô nghiệm
Hướng dẫn giải
⇒ Phương trình y’= 0 vô nghiệm.
Chọn D.
Ví dụ 6. Cho hàm số y= 2x3 – 6x2+ 2000. Phương trình y'= 0 có mấy nghiệm?
A. 0 B. 1 C. 2 D. 3
Hướng dẫn giải
+ Ta có đạo hàm: y'=6x2-12x
+ Để y'=0 thì 6x2-12x=0
Vậy phương trình y’= 0 có hai nghiệm.
Chọn C.
Ví dụ 7. Cho hàm số y= x3-4x2+5x-9. Với giá trị nào của x thì y'>0?
Hướng dẫn giải
Ví dụ 8.Tìm m để các hàm số y= mx3- 3mx2 + (9m- 3) x+ 3 có y' ≤0 ; ∀x∈R.
A. m< 1 B. m< 0 C. m ≤0 D. m > 0
Hướng dẫn giải
Hàm số đã cho xác định với mọi x.
Đạo hàm của hàm số là: y' = 3mx2 – 6mx + 9m-3
Để y' ≤0 ; ∀x∈R thì 3mx2 – 6mx + 9m - 3 ≤0 ; ∀x∈R (*)
+ Nếu m= 0 thì (*) trở thành: - 3≤0 (luôn đúng với mọi x)
⇒ m= 0 thỏa mãn.
+ Nếu m≠0 thì để (*) luôn đúng với mọi x khi và chỉ khi:
Ví dụ 9. Cho hàm số y= (kx-1)/(x-1). Xác định các giá trị của k để y'<0 ; ∀ x≠1
A. k <- 1 B. k> 1 C. k< - 2 D.k > 3
Hướng dẫn giải
Hàm số đã cho có đạo hàm với mọi x≠1.
Với mọi x≠1 hàm số có đạo hàm là:
Ví dụ 10. Cho hàm số y= √(2x2+4). Với những giá trị nào của x thì y'=0?
A. x= 0 B. x= 1 C. x= 2 D. không có giá trị nào thỏa mãn
Hướng dẫn giải
Hàm số đã cho xác định với mọi x.
Ví dụ 11. Cho hàm số y= (2x-1)/(x+1). Với những giá trị nào của x thì y’ >0
A. R. B. x> 0 C.R\{-1} D. -1
Hướng dẫn giải
Ví dụ 12. Cho hàm số y= 2( m-1)x3- 6(m+ 2)x2+ 2 tìm m để y' ≥0 ; ∀ x∈R?
A. m < - 2 B. m>2 C. m > -2 D. m= -2
Hướng dẫn giải
+ Hàm số xác định với mọi x∈R.
+ Đạo hàm của hàm số: y'=6(m-1) x2-12( m+2).x
+ Để y' ≥0 ; ∀ x∈R khi và chỉ khi :
6(m-1) x2-12( m+2).x ≥0 đúng ∀ x∈R ( *)
+ Với m= 1 thì (*)trở thành: -36 x ≥0 ⇔ x ≥0 ( loại)
+ Với m≠1 thì để (*) đúng với mọi x thì:
C. Bài tập vận dụng
Câu 1: Tìm m để các hàm số y= mx3- ( m- 2)x2 + ( m+ 1) x+ 7 có y' ≤0 ; ∀x∈R.
A. m< 4 B. m> - 2 C. m ≤4 D. m ≤-4
Câu 2: Cho hàm số y= (2x+k)/(4x-1). Xác định các giá trị của k để y'<0 ; ∀ x≠1/4
Câu 3: Cho hàm số y= √(x2+4x+19). Xác định các giá trị của x là nghiệm của bất phương trình y’<0 ?
A. x< -2 B. x> 4 C. x< 1 D. x>2
Câu 4: Cho hàm số y=(3x+1)/(2x+2). Giải phương trình y'= 4.
Câu 5: Cho hàm số y= (2 x2-2x)/(x+1). Phương trình y'=0 có nghiệm là?
A. x= -1 hoặc x= 0 B. x= 0 C. x= 1 hoặc x= -1 D. x= 2 hoặc x= - 1
Câu 6: Cho hàm số y= x3 – mx2 + 3x+ 3. Với những giá trị nào của m để x= 6 là nghiệm của bất phương trình y'<3?
A. m > 6 B. m > 9 C.m < - 6 D. m < 9
Câu 7: Cho hàm số y= ( m+1)x3- 3(2m- 1)x2+ x tìm m để y' ≤0 ; ∀ x∈R?
A. m < - 2 B. m>2 C. m > -2 D. Không có giá trị nào
Câu 8: Cho hàm số y= x3 – x2+ 2000x+ 8. Phương trình y'= 0 có mấy nghiệm?
A. 0 B. 1 C. 2 D. 3
Câu 9: Cho hàm số y= 2x3-4x2+2x-9. Với giá trị nào của x thì y'<0?
A. x< 1 B. x< 1/3 C. x >1 hoặc x< 1/3 D. 1/3< x <1
Câu 10: Cho hàm số y= x4 -3x3 +2k.x2+ 4x - 6. Tìm k để phương trình y'=1 có một nghiệm là x= 1?
A. k= 1/2 B. k= 2/3 C. k= 2 D. k= - 3
Câu 11: Cho hàm số y= x2-32√x+8. Nghiệm của phương trình y'=0 là
A.x=1 B. x= 4 C. x= 9 D. Vô nghiệm
Câu 12: Cho hàm số y= (x+2)/(x-3). Với những giá trị nào của x thì y’ >0
A. R. B. x > 0 C.R\{ 3} D. Không có giá trị nào