Mặt cầu có tâm thuộc d, cắt đường thẳng Δ theo một dây cung có độ dài l và tâm I cách đường thẳng Δ một khoảng là h chi tiết
Với Mặt cầu có tâm thuộc d, cắt đường thẳng Δ theo một dây cung có độ dài l và tâm I cách đường thẳng Δ một khoảng là h Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Mặt cầu có tâm thuộc d, cắt đường thẳng Δ theo một dây cung có độ dài l và tâm I cách đường thẳng Δ một khoảng là h .
Mặt cầu có tâm thuộc d, cắt đường thẳng Δ theo một dây cung có độ dài l và tâm I cách đường thẳng Δ một khoảng là h
Phương pháp giải
Gọi M (a; b; c) thuộc Δ, u→ là một vecto chỉ phương
Khi đó, khoảng cách từ I đến đường thẳng Δ được tính theo công thức:
h=d(I;(d))=
⇒ Tìm được t ⇒ tọa độ điểm I
Gọi R là bán kính mặt cầu
⇒ R2=(l/2)2 +h2

Ví dụ minh họa
Bài 1: Trong không gian hệ tọa độ Oxyz, cho 2 đường thẳng , t∈R và
,t' ∈ R. Lập phương trình mặt cầu (S) có tâm I ∈∆1, biết Δ2 cắt mặt cầu theo dây cung có độ dài là 8 và I cách Δ2 một khoảng bằng 3
Hướng dẫn:
Tâm I ∈Δ1 nên I(1;-t; -2+t)
Gọi R là bán kính của mặt cầu
⇒ R2 =(l/2)2 +h2 =(8/2)2 +32=25
Ta có: M (3; -2; 0) ∈Δ2, một Vecto chỉ phương của Δ2 là u→=(0;1;1)
IM→ =(2; -2+t;2-t)
⇒ [IM→ ; u→ ]=(t-4;-2;2)
Khi đó, khoảng cách từ I đến Δ2 là:
d(I; Δ2 )
=3 ⇔ t2 -8t +24 =18
Với t=4 +√10 thì I(1; -4 -√10;2 +√10)
Với t=4 -√10 thì I(1; -4 +√10;2 -√10)
Vậy phương trình mặt cầu cần tìm là:
(x-1)2 +(y+4 +√10)2 +(z-2-√10)2=25
(x-1)2 +(y+4 -√10)2 +(z-2+√10)2=25
Bài 2: Trong không gian hệ tọa độ Oxyz, cho 2 đường thẳng , t∈R và
, t'∈R. Lập phương trình mặt cầu (S) có tâm I ∈Δ1 và I cách Δ2 một khoảng bằng 3, cho biết mặt phẳng (P): 2x + 2y – 7z = 0 cắt mặt cầu (S) theo một đường tròn giao tuyến có bán kính r = 5.
Hướng dẫn:
Tâm I thuộc Δ1 nên I (t; -t; 0)
Điểm M (5; -2; 0) thuộc Δ2 và một vecto chỉ phương là u→=(-2;0;1)
IM→=(5-t; -2+t;0)
⇒ [IM→ ; u→ ]=(t-2;t-5;2t-4)
Khi đó, khoảng cách từ I đến Δ2 là:
d(I; Δ2 )
=3 ⇔ 6t2 -30t+45=45
+ Điểm I1(0;0;0) thuộc mặt phẳng (P) nên bán kính của đường tròn giao tuyến là bán kính của mặt cầu.
Phương trình mặt cầu là:
x2 +y2 +z2=25
+ Điểm I2 (5; -5;0) thuộc mặt phẳng (P) nên bán kính của đường tròn giao tuyến là bán kính của mặt cầu.
Phương trình mặt cầu là:
(x-5)2 +(y+5)2 +z2=25
