Cách tính thể tích khối chóp có mặt bên vuông góc với đáy chi tiết

Với Cách tính thể tích khối chóp có mặt bên vuông góc với đáy Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Cách tính thể tích khối chóp có mặt bên vuông góc với đáy.

597
  Tải tài liệu

Tính thể tích khối chóp có mặt bên vuông góc với đáy

Phương pháp giải & Ví dụ

Để xác định đường cao hình chóp, ta vận dụng định lí sau:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hỏi đáp VietJack

Ví dụ minh họa

Bài 1: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BA = 3a, BC = 4a; mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết SB=2a√3 và ∠(SBC)=30º. Tính thể tích khối chóp S.ABC

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Kẻ SH vuông góc với BC

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Xét tam giác SHB vuông tại H có:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh a. Mặt bên (SAB) là tam giác đều nằm trong mặt phẳng vuông góc với đáy ABCD. Tính thể tích khối chóp S.ABCD

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi H là trung điểm của AB

∆SAB đều nên SH ⊥ AB

(SAB) ⊥ (ABCD) ⇒ SH ⊥ (ABCD)

Vậy H là chân đường cao của khối chóp.

Ta có: ∆SAB đều cạnh a nên SH = a√3/2

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 3: Cho tứ diện ABCD có ABC là tam giác đều, BCD là tam giác vuông cân tại D. (ABC) ⊥ (BCD) và AD hợp với (BCD) một góc 60º, AD = a. Tính thể tích của tứ diện ABCD

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi H là trung điểm của BC. Ta có tam giác ABC đều nên AH ⊥ BC

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ta có: HD là hình chiếu vuông góc của DA lên mặt phẳng (BCD)

Do đó, góc giữa HD và mặt phẳng (BCD) là góc giữa AD và DH

⇒ ∠(ADH) =60º

Xét tam giác AHD vuông tại H có:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

BCD là tam giác vuông cân tại D có DH là trung tuyến nên

BC=2DH=a

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài viết liên quan

597
  Tải tài liệu