Cách Giải phương trình logarit bằng cách mũ hóa chi tiết
Với cách Giải phương trình logarit bằng cách mũ hóa Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết cách Giải phương trình logarit bằng cách mũ hóa .
Giải phương trình logarit bằng cách mũ hóa
A. Phương pháp giải & Ví dụ
1. Phương trình lôgarit cơ bản
• loga x = b ⇔ x = ab (0 < a ≠ 1).
• loga f(x) = loga g(x)
2. Cơ sở của phương pháp mũ hoá
loga f(x) = g(x) (0 < a ≠ 1) ⇔ f(x) = ag(x)
Ví dụ minh họa
Bài 1: Giải phương trình log2 (x+3)=1.
Hướng dẫn:
log2 (x+3) = 1 ⇔ x+3 = 2 ⇔ x = -1
Bài 2: Giải phương trình log(25x - 22x+1) = x.
Hướng dẫn:
log(25x-22x+1 )=x ⇔ 25x-22x+1=10x ⇔ 25x-2.4x=10x
Kết hợp với điều kiện, ta được tập nghiệm của phương trình đã cho là
Bài 3: Giải phương trình log2 (9-2x )=3-x.
Hướng dẫn:
log2 (9-2x ) = 3-x ⇔ log2 (9-2x ) = log2 23-x ⇔ 9-2x=23-x ⇔ 9-2x=8/2x ⇔ 22x-9.2x+8=0
Tập nghiệm của phương trình đã cho là {0;3}.