Viết phương trình mặt cầu có tâm I và bán kính R chi tiết

Với Viết phương trình mặt cầu có tâm I và bán kính R Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Viết phương trình mặt cầu có tâm I và bán kính R.

529
  Tải tài liệu

Viết phương trình mặt cầu có tâm I và bán kính R

Phương pháp giải

Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Hỏi đáp VietJack

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5.

Hướng dẫn:

Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Khi đó, phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5 là:

(S): (x-2)2+(y-3)2+(z+1)2=25.

Bài 2: Viết phương trình mặt cầu có đường kính AB với A (4; -3; 7), B(2; 1; 3)

Hướng dẫn:

Gọi I là trung điểm của AB

Do AB là đường kính của mặt cầu I là tâm mặt của mặt cầu.

⇒ I(3; -1;5)

Bán kính mặt cầu là:

R=IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 3

Vậy phương trình mặt cầu có đường kính AB là:

(x-3)2+(y+1)2+(z-5)2=9

Chú ý: Để lập phương trình mặt cầu nhận AB là đường kính thì ta tìm tâm I là trung điểm của AB và bán kính R=AB/2

Bài 3: Viết phương trình mặt cầu có tâm I (3; -2; 2) và đi qua A(-2; 0; -1)

Hướng dẫn:

Vì mặt cầu (S) đi qua A nên (S) có bán kính

R=IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải=√38

Vậy phương trình mặt cầu có tâm I (3; -2; 2) và bàn kính R=√38 là:

(x-3)2+(y+2)2+(z-2)2=38

Chú ý: Để lập phương trình mặt cầu khi biết tâm I (a; b; c) và đi qua một điểm A cho trước thì ta tìm bán kính R = IA. Khi đó, phương trình mặt cầu (S) có dạng:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Bài viết liên quan

529
  Tải tài liệu