Cách Tìm tham số m để hàm số đạt cực trị tại một điểm chi tiết

Với cách Tìm tham số m để hàm số đạt cực trị tại một điểm Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết cách Tìm tham số m để hàm số đạt cực trị tại một điểm .

2199
  Tải tài liệu

Tìm tham số m để hàm số đạt cực trị tại một điểm cực hay

A. Phương pháp giải & Ví dụ

Phương pháp giải

Trong dạng toán này ta chỉ xét trường hợp hàm số có đạo hàm tại x0.

Khi đó để giải bài toán này, ta tiến hành theo hai bước.

Bước 1. Điều kiện cần để hàm số đạt cực trị tại x0 là y'(x0) = 0, từ điều kiện này ta tìm được giá trị của tham số .

Bước 2. Kiểm lại bằng cách dùng một trong hai quy tắc tìm cực trị ,để xét xem giá trị của tham số vừa tìm được có thỏa mãn yêu cầu của bài toán hay không?

Hỏi đáp VietJack

Ví dụ minh họa

Ví dụ 1. Cho hàm số y = x3 - 3mx2 +(m2 - 1)x + 2, m là tham số thực. Tìm tất cả các giá trị của m để hàm số đã cho đạt cực tiểu tại x = 2.

Hướng dẫn

Tập xác định D = R.

Tính y'=3x2 - 6mx + m2 - 1; y'' = 6x - 6m.

Hàm số đã cho đạt cực tiểu tại x = 2 ⇒ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇔ m = 1.

Ví dụ 2. Tìm các giá trị của m để hàm số y = -x3 + (m+3)x2 - (m2 + 2m)x - 2 đạt cực đại tại x = 2.

Hướng dẫn

Tập xác định D = R.

y' = -3x2 + 2(m + 3)x - (m2 + 2m) Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải; y'' = -6x + 2(m + 3).

Hàm số đã cho đạt cực đại tại x = 2 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Kết luận : Giá trị m cần tìm là m = 0 ,m = 2.

Ví dụ 3. Tìm m để hàm số y = x4 - 2(m + 1)x2 - 2m - 1 đạt cực đại tại x = 1 .

Hướng dẫn

Tập xác định D = R.

Ta có y' = 4x3 -4(m + 1)x.

+ Để hàm số đạt cực đại tại x = 1 cần y'(1) = 0 ⇔ 4 - 4(m + 1) = 0 ⇔ m = 0

+ Với m = 0 ⇒ y' = 4x3 - 4x ⇒ y'(1) = 0.

+ Lại có y'' = 12x2 - 4 ⇒ y''(1) = 8 > 0.

⇒Hàm số đạt cực tiểu tại x = 1 ⇒ m = 0 không thỏa mãn.

Vậy không có giá trị nào của m để hàm số đạt cực đại tại x = 1.

B. Bài tập vận dụng

Bài 1. Cho hàm số: y = 1/3 x3 - mx2 +(m2 - m + 1)x + 1. Với giá trị nào của m thì hàm số đạt cực đại tại điểm x = 1

Bài 2. Cho hàm số y = 1/3 x3 + (m2 - m + 2) x2 + (3m2 + 1)x + m - 5. Tìm m để hàm số đạt cực tiểu tại x = -2 .

Bài 3. Cho hàm số y = 1/3 x3 - (m+1) x2 + (m2 + 2m)x + 1 (m là tham số). Tìm tất cả tham số thực m để hàm số đạt cực tiểu tại x = 2.

Bài 4. Tìm tất cả tham số thực m để hàm số y = (m-1)x4 - (m2 - 2) x2 + 2016 đạt cực tiểu tại

x = -1.

Bài 5. Tìm giá trị của tham số m để hàm số y = x3/3 +(2m - 1)x2 + (m - 9)x + 1 đạt cực tiểu tại

x = 2 .

Bài 6. Tìm giá trị của tham số m để hàm số y = mx3 + 2(m - 1)x2 - (m + 2)x + m đạt cực tiểu tại x = 1 .

Bài 7. Tìm giá trị của tham số m để hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải đạt cực tiểu tại x = 1.

Bài 8. Tìm giá trị của tham số m để hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải đạt cực đại tại x = -1.

Bài viết liên quan

2199
  Tải tài liệu