Cách Tính chiều cao, bán kính, diện tích, thể tích hình trụ chi tiết
Với Cách tính chiều cao, bán kính, diện tích, thể tích hình trụ Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết cách Tính chiều cao, bán kính, diện tích, thể tích hình trụ.
Tính chiều cao, bán kính, diện tích, thể tích hình trụ
Cho hình trụ có chiều cao là h và bán kính đáy bằng r, khi đó:
+ Diện tích xung quanh của hình trụ: Sxq = 2πrh
+ Diện tích toàn phần của hình trụ: Stp = Sxq + Sđ = 2πrh + 2πr2
+ Thể tích khối trụ: V = πr2 h
Ví dụ minh họa
Bài 1: Một hình trụ có bán kính đáy r = 5 cm, chiều cao h = 7cm. Tính Diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ.
Hướng dẫn:
Diện tích xung quanh của hình trụ: Sxq = 2πrh = 2π.5.7 = 70π
Diện tích toàn phần của hình trụ: Stp = 2πrh + 2πr2 = 70π+2π.52 = 120π
Thể tích khối trụ: V= πr2 h = 2π.52.7 = 350π
Bài 2:
a) Một hình trụ (T) có diện tích toàn phần là 120π (cm2) và có bán kính đáy bằng 6 cm. Tính chiều cao của (T)
b) Một hình trụ (T) có thể tích bằng 81π (cm3) và đường sinh gấp ba lần bán kính đáy. Độ dài đường sinh của (T) là:
Hướng dẫn:
a) Ta có:
Stp = 2πrh + 2πr2 = 2π.6.h + 2π.62 = 120π
⇒ h = 4(cm)
Vậy chiều cao của hình trụ là 4 cm.
b) Gọi bán kính đáy của hình trụ là r
Do đường sinh của hình trụ bằng chiều cao nên chiều cao của hình trụ là 3r
Ta có: V = πr2 h = πr2.3r = 81π ⇒ r = 3
Vậy độ dài đường sinh là 3.3 = 9 cm.
Bài 3: Hình trụ (T) được sinh ra khi quay hình chữ nhật ABCD quanh cạnh AB. Biết AC = a√2 và ∠(ACB)=45^ordm;. Tính diện tích toàn phần Stp của hình trụ (T)
Hướng dẫn:
Khi quay hình chữ nhật ABCD quanh cạnh AB ta được hình trụ có bán kính đáy BC, đường cao AB
∆ABC vuông cân tại B có AC = a√2 ⇒ AB = BC = a.
Stp = 2πrh+2πr2 = 2π.a.a+2πa2 = 4πa2
Bài 4: Một hình tứ diện đều ABCD cạnh a. Xét hình trụ có 1 đáy là đường tròn nội tiếp tam giác ABC và có chiều cao bằng chiều cao hình tứ diện. Tính thể tích của hình trụ đó
Hướng dẫn:
Gọi O là tâm của ∆ABC đều cạnh a, M là trung điểm của BC
Xét tam giác SAO vuông tại O có:
Khi đó, hình trụ có
Thể tích của hình trụ là: