Mặt cầu có tâm thuộc d, cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính r và tâm I cách mặt phẳng (P) một khoảng h chi tiết

Với Mặt cầu có tâm thuộc d, cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính r và tâm I cách mặt phẳng (P) một khoảng h Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết cách giải bài Mặt cầu có tâm thuộc d, cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính r và tâm I cách mặt phẳng (P) một khoảng h. .

1238
  Tải tài liệu

Mặt cầu có tâm thuộc d, cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính r và tâm I cách mặt phẳng (P) một khoảng h

Phương pháp giải

Viết phương trình đường thẳng d về dạng tham số:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Tâm I thuộc đường thẳng d nên I (x0+at; y0+bt; z0+ct)

Sử dụng công thức

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

d(I;(P))=h

⇒ Tìm được t ⇒ Tọa độ tâm

Gọi R là bán kính mặt cầu

⇒ R=√(r2 +h2 )

Hỏi đáp VietJack

Ví dụ minh họa

Bài 1: Trong không gian hệ tọa độ Oxyz, cho đường thẳng

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

và (P): 2x – y – 2z – 2 = 0. Viết phương trình mặt cầu (S) có tâm I thuộc Δ; I cách (P) một khoảng bằng 2 và (P) cắt mặt cầu (S) theo một đường tròn giao tuyến (C) có bán kính bằng 3.

Hướng dẫn:

Phương trình tham số của Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

I thuộc Δ nên I (-t; -1 + 2t; 1+ t)

Khoảng cách từ I đến mặt phẳng (P) là:

h=d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải=|-1-2t|

Theo đề bài, I cách (P) một khoảng bằng 2 nên d(I;(P))=2

⇔ |-1-2t|=2

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi R là bán kính của mặt cầu

Ta có: RCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải=√13

Vậy có hai phương trình mặt cầu thỏa mãn là:

(x+1/2)2 +y2 +(z-3/2)2=13

(x-3/2)2 +(y+4)2 +(z-1/2)2=13

Bài 2: Trong không gian Oxyz, cho mặt phẳng (P): 2x – 3y – z – 2 = 0. Viết phương trình mặt cầu (S) có tâm E thuộc tia Ox sao cho mặt phẳng (P) cách E một khoảng bằng √14 và cắt mặt cầu (S) theo thiết diện là đường tròn có đường kính bằng 4.

Hướng dẫn:

Tâm E thuộc tia Ox nên E (a; 0; 0)

Khoảng cách từ E đến mặt phẳng (P) là:

d(E;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Theo giả thiết, khoảng cách từ E đến mặt phẳng (P) bằng √14

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √14 ⇔ |2a-2|=14

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi R là bán kính mặt cầu

Ta có: R

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √18

Vậy có 2 phương trình mặt cầu thỏa mãn:

(x-8)2 +y2 +z2=18

(x+6)2 +y2 +z2=18

Bài viết liên quan

1238
  Tải tài liệu