Cách tính tỉ số thể tích hai khối chóp chi tiết
Với Cách tính tỉ số thể tích hai khối chóp Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Cách tính tỉ số thể tích hai khối chóp.
Cách tính tỉ số thể tích hai khối chóp
Phương pháp giải & Ví dụ
Cho hình chóp S.ABC có 3 điểm A’. B’, C’ lần lượt nằm trên 3 cạnh SA, SB, SC. Khi đó, ta có công thức về tỷ số thể tích như sau:
Chú ý 1:
+ Công thức tỷ số thể tích trên ta chỉ áp dụng cho chóp có đáy là tam giác.
+ Công thức trên vẫn đúng trong trường hợp A’ trùng với A. Khi đó:
Chú ý 2: (Áp dụng cho khối chóp với mọi đáy)
+ Hai hình chóp có cùng chiều cao thì tỉ số thể tích chính là tỉ số diện tích đáy tương ứng.
+ Hai hình chóp có cùng diện tích đáy thì tỉ số thể tích chính là tỉ số đường cao tương ứng.
Ví dụ minh họa
Bài 1: Hình chóp S.ABC có A’, B’, C’ lần lượt là trung điểm của SA, SB, SC. Tính tỷ số thể tích của hai khối chóp S.A’B’C’ và S.ABC
Hướng dẫn:
Do A’, B’, C’ lần lượt là trung điểm của SA, SB, SC nên ta có:
Bài 2: Cho hình chóp tứ giác đều S.ABCD. Gọi A’, B’, C’, D’ theo thứ tự là trung điểm của AB, BC, CD, DA. Khi đó, tỉ số thể tích của hai khối chóp S.A’B’C’D’ và S.ABCD bằng?
Hướng dẫn:
Ta thấy hai hình chóp S.A’B’C’D’ và S.ABCD có chung chiều cao kẻ từ đỉnh S xuống đáy. Vậy để tìm tỉ số thể tích hai khối chóp, ta chỉ cần tìm tỉ số diện tích 2 đáy.
Ta có:
Bài 3: Cho hình chóp SABC. Trên 3 cạnh SA, SB, SC lần lượt lấy 3 điểm M, N, P, sao cho SA=2SM;SB=3SN;SC=2SP.
Hướng dẫn:
Ta có:
Bài 4: Cho hình chóp S.ABCD có thể tích bằng 48 và ABCD là hình thoi. Các điểm M, N, P, Q lần lượt là các điểm trên các đoạn SA, SB, SC, SD thỏa mãn SA = 2SM; SB = 3SN; SC = 4 SP; SD = 5 SQ. Tính thể tích của khối chóp S.MNPQ
Hướng dẫn:
Vì công thức thể tích chỉ dùng cho tam giác có chung đỉnh và tương ứng tỉ lệ cạnh
Nên ta chia khối chóp thành 2 khối chóp nhỏ có đáy là tam giác
Ta có:
Do ABCD là hình thoi nên SABC = SADC và hai hình chóp S.ABC; S.ADC có cùng chiều cao hạ từ S nên
Bài 5: Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân ở B, AC=a√2;SA=a,SA⊥(ABC). Gọi G là trọng tâm của ∆SBC, một mặt phẳng (α) đi qua AG và song song với BC cắt SC, SB lần lượt taị M, N. Tính thể tích khối chóp S.AMN.
Hướng dẫn:
Tam giác ABC vuông tại B có AC=a√2⇒AB=BC=a
Gọi I là trung điểm của BC, G là trọng tâm tam giác SBC
⇒SG/SI=2/3
Mà MN // BC nên ta có:
Mặt khác: