Cách Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số chi tiết
Với cách Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết cách Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số cực hay
A. Phương pháp giải & Ví dụ
1. Định nghĩa: Cho hàm số y = f(x) xác định trên miền D
Số M gọi là giá trị lớn nhất của hàm số y = f(x) trên D nếu:
Kí hiệu:
Số m gọi là giá trị nhỏ nhất của hàm số y = f(x) trên D nếu:
Kí hiệu:
2. Quy trình tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số sử dụng bảng biến thiên
Bước 1. Tính đạo hàm f'(x).
Bước 2. Tìm các nghiệm của f'(x) và các điểm f'(x)trên K.
Bước 3. Lập bảng biến thiên của f(x) trên K.
Bước 4. Căn cứ vào bảng biến thiên kết luận
3. Quy trình tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số không sử dụng bảng biến thiên
Trường hợp 1. Tập K là đoạn [a; b]
Bước 1. Tính đạo hàm f'(x).
Bước 2. Tìm tất cả các nghiệm xi ∈[a; b] của phương trình f'(x) = 0 và tất cả các điểm αi ∈ [a; b] làm cho f'(x) không xác định.
Bước 3.Tính f(a), f(b), f(xi), f(αi).
Bước 4. So sánh các giá trị tính được và kết luận
Trường hợp 2. Tập K là khoảng (a; b)
Bước 1. Tính đạo hàm f'(x).
Bước 2. Tìm tất cả các nghiệm xi ∈ (a; b) của phương trình f'(x) = 0 và tất cả các điểm αi ∈ (a; b) làm cho f'(x) không xác định.
Bước 3. Tính
Bước 4. So sánh các giá trị tính được và kết luận
Chú ý: Nếu giá trị lớn nhất (nhỏ nhất) là A hoặc B thì ta kết luận không có giá trị lớn nhất (nhỏ nhất).
Ví dụ minh họa
Ví dụ 1: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x3 - 3x2 - 9x + 2 trên đoạn [-2; 2].
Hướng dẫn
Ta có: y' = 3x2 - 6x - 9 = 0 ⇔
Mà y(-2) = 0; y(2) = -20; y(-1) = 7.
Suy ra
Ví dụ 2: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
Hướng dẫn
Tập xác định: D = [-2; 2]. Ta có:
Khi đó y' = 0 ⇔
Có y(√2) = 2√2, y(2) = 2 ,y(-2) = -2.
Vậy
Ví dụ 3: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x - sin2x trên đoạn [π/2; π]
Hướng dẫn
Ta có y' = 1 - 2cos2x = 0 ⇔ cos2x = 1/2 = cos π/3 ⇔ x = ±π/6 + kπ.
Xét x ∈[(-π)/2; π] ta được x = ±π/6; x = 5π/6.
f((-π)/2) = -π/2; f(π) = π; f((-π)/6) = -π/6 + √3/2; f(π/6) = π/6 - √3/2; f(5π/6) = 5π/6 + √3/2.
Suy ra
B. Bài tập vận dụng
Câu 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = x3 - 3x2 - 9x + 35 trên đoạn [-4; 4]
Câu 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên [0; 2]
Câu 3: Gọi m là giá trị nhỏ nhất của hàm số trên đoạn [2; 4]. Tìm m.
Câu 4: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [-1; 6]
Câu 5: Tìm tổng giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) = |x| + 3 trên [-1; 1]
Câu 6: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [0; 3]
Câu 7: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2sin2 x + 2sinx - 1 bằng
Câu 8: Cho hàm số Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Tìm M và m.