Điểm đặc biệt thuộc đồ thị hàm số chi tiết

Với Điểm đặc biệt thuộc đồ thị hàm số Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Điểm đặc biệt thuộc đồ thị hàm số .

808
  Tải tài liệu

Điểm đặc biệt thuộc đồ thị hàm số cực hay (điểm cố định, điểm có tọa độ nguyên, ...)

A. Phương pháp giải & Ví dụ

1. Bài toán tìm điểm cố định của họ đường cong

Xét họ đường cong (Cm) có phương trình y = f(x, m), trong đó f là hàm đa thức theo biến x với m là tham số sao cho bậc của m không quá 2. Hãy tìm những điểm cố định thuộc họ đường cong khi m thay đổi?

Phương pháp giải:

Bước 1: Đưa phương trình y=f(x, m) về dạng phương trình theo ẩn m có dạng sau:

Am+B=0 hoặc Am2 +Bm+C=0.

Bước 2: Cho các hệ số bằng 0, ta thu được hệ phương trình và giải hệ phương trình:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bước 3: Kết luận

Nếu hệ vô nghiệm thì họ đường cong (Cm) không có điểm cố định.

Nếu hệ có nghiệm thì nghiệm đó là điểm cố định của (Cm).

2. Bài toán tìm điểm có tọa độ nguyên:

Cho đường cong (C) có phương trình y = f(x) (hàm phân thức). Hãy tìm những điểm có tọa độ nguyên của đường cong?

Những điểm có tọa độ nguyên là những điểm sao cho cả hoành độ và tung độ của điểm đó đều là số nguyên.

Phương pháp giải:

Bước 1: Thực hiện phép chia đa thức chia tử số cho mẫu số.

Bước 2: Lí luận để giải bài toán.

3. Bài toán tìm điểm có tính chất đối xứng:

Cho đường cong (C) có phương trình y = f(x). Tìm những điểm đối xứng nhau qua một điểm, qua đường thẳng.

Bài toán 1: Cho đồ thị (C): y = Ax3 + Bx2 + Cx + D trên đồ thị (C) tìm những cặp điểm đối xứng nhau qua điểmI(xI, yI).

Phương pháp giải:

Gọi M(a; Aa3 + Ba2 + Ca + D), N(b; Ab3 + Bb2 + Cb + D) là hai điểm trên (C) đối xứng nhau qua điểm I.

Ta có: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Giải hệ phương trình tìm được a,b từ đó tìm được toạ độ M, N.

Trường hợp đặc biệt : Cho đồ thị (C):y = Ax3 + Bx2 + Cx + D. Trên đồ thị (C) tìm những cặp điểm đối xứng nhau qua gốc tọa độ.

Phương pháp giải:

Gọi M(a, Aa3 + Ba2 + Ca + D), N(b, Ab3 + Bb2 + Cb + D) là hai điểm trên (C) đối xứng nhau qua gốc tọa độ.

Ta có: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Giải hệ phương trình tìm đượca,b từ đó tìm được toạ độ M,N.

Bài toán 3: Cho đồ thị (C):y = Ax3 + Bx2 + Cx + D trên đồ thị (C) tìm những cặp điểm đối xứng nhau qua đường thẳng d:y=A1x + B1.

Phương pháp giải:

Gọi M(a; Aa3 + Ba2 + Ca + D),N(b; Ab3 + Bb2 + Cb + D) là hai điểm trên (C) đối xứng nhau qua đường thẳng d.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải (với I là trung điểm của MN và u ⃗_d là vectơ chỉ phương của đường thẳng d).

Giải hệ phương trình tìm được M, N.

Bài toán tìm điểm đặc biệt khác:

Lí thuyết:

Cho hai điểm P(x1; y1); Q(x2; y2 ) ⇒ PQ=Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải.

Cho điểm M(xo; yo ) và đường thẳng d: Ax + By + C = 0, thì khoảng cách từ M đến d là h(M;d)=Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải.

Khoảng cách từ M(xo; yo ) đến tiệm cận đứng x = a là h = |xo - a|.

Khoảng cách từ M(xo; yo )đến tiệm cận ngang y = b là h = |yo - b|.

Chú ý: Những điểm cần tìm thường là hai điểm cực đại, cực tiểu hoặc là giao của một đường thẳng với một đường cong (C) nào đó. Vì vậy trước khi áp dụng công thức, ta cần phải tìm tìm điều kiện tồn tại rồi tìm tọa độ của chúng.

Hỏi đáp VietJack

Các bài toán thường gặp

Bài toán 1: Cho hàm số y = (ax + b)/(cx + d) (c ≠ 0,ad - bc ≠ 0) có đồ thị (C). Hãy tìm trên (C) hai điểm A và B thuộc hai nhánh đồ thị hàm số sao cho khoảng cách AB ngắn nhất.

Phương pháp giải:

(C) có tiệm cận đứng x = -d/c do tính chất của hàm phân thức, đồ thị nằm về hai phía của tiệm cận đứng. Nên gọi hai số α,β là hai số dương.

Nếu A thuộc nhánh trái thì xA < -d/c ⇒ xA = -d/c - α < -d/c; yA = f(xA).

Nếu B thuộc nhánh phải thì xB > -d/c ⇒ xB = -d/c + β > - d/c; yB = f(xB).

Sau đó tính AB2 =(xB - xA )2 + (yB - yA)2 =[(a + β) - (a - α)]2 +(yB - yA)2 .

Áp dụng bất đẳng thức Côsi (Cauchy), ta sẽ tìm ra kết quả.

Bài toán 2: Cho đồ thị hàm số (C) có phương trình y = f(x). Tìm tọa độ điểm M thuộc (C) để tổng khoảng cách từ M đến hai trục tọa độ nhỏ nhất.

Phương pháp giải:

Gọi M(x;y)và tổng khoảng cách từ Mđến hai trục tọa độ là d thì d = |x| + |y|.

Xét các khoảng cách từ Mđến hai trục tọa độ khi M nằm ở các vị trí đặc biệt: Trên trục hoành, trên trục tung.

Sau đó xét tổng quát, những điểm Mcó hoành độ, hoặc tung độ lớn hơn hoành độ hoặc tung độ của M khi nằm trên hai trục thì loại đi không xét đến.

Những điểm còn lại ta đưa về tìm giá trị nhỏ nhất của đồ thi hàm số dựa vào đạo hàm rồi tìm được giá trị nhỏ nhất của d.

Bài toán 3: Cho đồ thị (C) có phương trình y = f(x). Tìm điểm Mtrên (C) sao cho khoảng cách từ M đến Ox bằng klần khoảng cách từ M đến trụcOy.

Phương pháp giải:

Theo đầu bài ta có |y| = k|x| ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài toán 4: Cho đồ thị hàm số (C) có phương trình y = f(x) = (ax + b)/(cx + d) (c ≠ 0, ad - bc ≠ 0). Tìm tọa độ điểm M trên (C) sao cho độ dài MIngắn nhất (với I là giao điểm hai tiệm cận).

Phương pháp giải:

Tiệm cận đứng x = (-d)/c; tiệm cận ngang y = a/c.

Ta tìm được tọa độ giao điểm I((-d)/c;a/c)của hai tiệm cận.

Gọi M(xM; yM) là điểm cần tìm. Khi đó:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Sử dụng phương pháp tìm GTLN - GTNN cho hàm số g để thu được kết quả.

Bài toán 5: Cho đồ thị hàm số (C) có phương trình y = f(x) và đường thẳng d:Ax+By+C=0. Tìm điểm I trên (C) sao cho khoảng cách từ I đến d là ngắn nhất.

Phương pháp giải

Gọi I thuộc (C) ⇒ I(xo; yo ); yo = f(xo).

Khoảng cách từ I đến d là g(xo) = h(I;d) = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khảo sát hàm số y = g(x) để tìm ra điểm I thỏa mãn yêu cầu.

Ví dụ minh họa

Ví dụ 1: Đồ thị của hàm số y = (m - 1)x + 3 - m (m là tham số) luôn đi qua một điểm Mcố định.

Tìm điểm M cố định đó.

Hướng dẫn:

Gọi M(xo; yo) là điểm cố định cần tìm.

Ta có yo=(m - 1)xo + 3 - m,∀m

⇔(xo - 1)m - xo - yo + 3 = 0,∀m⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải ⇒ M(1; 2).

Vậy điểm cố định cần tìm là M(1;2)

Ví dụ 2: Trên đồ thị (C) của hàm số y=2/(x + 2) có bao nhiêu điểm có tọa độ nguyên?. Tìm các điểm có tọa độ nguyên đó.

Hướng dẫn:

Gọi M(xo; yo) với xo∈Z\{-2},yo∈Z

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải ⇒xo + 2 ∈ {-2; -1; 1; 2}⇒xo ∈ {-4; -3; -1; 0}

Khi đó trên đồ thị (C) có bốn điểm có tọa độ nguyên là M1(-4; -1),M2(-3; -2),M3(-1; 2),M4(0; 1)

Ví dụ 3: Xác định tọa độ điểm M thuộc đồ thị (C) của hàm số y = (x+2)/(2x-1) sao cho M cách đều hai điểm A(2,0) và B(0,2).

Hướng dẫn:

Phương trình đường trung trực đoạn AB là y=x.

Những điểm thuộc đồ thị cách đều A và B có hoành độ là nghiệm của phương trình :

(x + 2)/(2x - 1) = x ⇔ x2 - x - 1 = 0⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hai điểm trên đồ thị thỏa yêu cầu bài toán là ((1 - √5)/2 ,(1 - √5)/2) ; ((1 + √5)/2 ,(1 + √5)/2).

Bài viết liên quan

808
  Tải tài liệu