Giới hạn, đạo hàm của hàm số mũ, lũy thừa, lôgarit
Với Giới hạn, đạo hàm của hàm số mũ, lũy thừa, lôgarit Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Giới hạn, đạo hàm của hàm số mũ, lũy thừa, lôgarit.
Giới hạn, đạo hàm của hàm số mũ, lũy thừa, lôgarit
A. Phương pháp giải & Ví dụ
Bài toán 1: Giới hạn của hàm số mũ, hàm số Logarit
Phương pháp
Chúng ta có các dạng giới hạn đặc biệt sau:
Mở rộng: Ta có
Quy tắc Lopitan: Nếu f(x), g(x) khả vi ở lân cận x0 trừ tại điểm x0 thì:
Đồng thời
Quy tắc vẫn đúng với x → ∞
Bài toán 2: Đạo hàm của các hàm số lũy thừa, hàm số mũ, hàm số logarit
Phương pháp:
- Hàm số lũy thừa:
Hàm số y = xα, (α ∈ R) có đạo hàm với mọi x > 0 và (xα)' = α.xα-1.
- Hàm số mũ:
- Hàm số Logarit:
Ví dụ minh họa
Bài 1: Tìm các giới hạn sau:
Hướng dẫn:
a) Ta biến đổi
b) Ta biến đổi
c) Ta biến đổi
Bài 2: Tính đạo hàm của các hàm số sau:
Hướng dẫn:
Bài 3: Tính đạo hàm của các hàm số sau:
Hướng dẫn:
B. Bài tập vận dụng
Bài 1: Tìm giới hạn sau
Bài 2: Tìm giới hạn sau
Bài 3: Tính đạo hàm của hàm số tại điểm x = 2
Bài 4: Tính đạo hàm của hàm số y = log(ln2x).
Bài 5: Tính đạo hàm của hàm số
Bài 6: Tính đạo hàm của hàm số
Bài 7: Tính đạo đạo hàm của hàm số y=log3(x+1)-2ln(x-1)+2x tại điểm x = 2
Bài 8: Cho hàm số . Tính tổng T
Bài 9: Cho . Tính giá trị biểu thức S
Bài 10: Cho hàm số y = ln(2x2 + e2). Nếu thì giá trị m bằng bao nhiêu?