Viết phương trình mặt cầu tâm I cắt mặt phẳng theo đường tròn có bán kính R chi tiết
Với Viết phương trình mặt cầu tâm I cắt mặt phẳng theo đường tròn có bán kính R Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Viết phương trình mặt cầu tâm I cắt mặt phẳng theo đường tròn có bán kính R .
Viết phương trình mặt cầu tâm I cắt mặt phẳng theo đường tròn có bán kính R
Phương pháp giải
Khoảng cách từ tâm I đến mặt phẳng P là:
d=d(I;(P))
Bán kính R của mặt cầu được tính theo công thức:
R=√(r2+d2 )
Khi đó phương trình mặt cầu có tâm I (a; b; c) và bán kính R là:
(S): (x-a)2+(y-b)2+(z-c)2=R2
Ví dụ minh họa
Bài 1: Trong không gian Oxyz, cho mặt phẳng (P): 2x + y – 2z + 10 = 0 và điểm I (2; 1; 3). Phương trình mặt cầu (S) tâm I cắt mặt phẳng (P) theo một đường tròn (C) có bán kính bằng 4 là:
Hướng dẫn:
Khoảng cách từ I đến mặt phẳng (P) là:
d(I;P)
Bán kính R của mặt cầu là:
R= 5
Phương trình mặt cầu cần tìm là:
(x-2)2+(y-1)2+(z-3)2=25
Bài 2: Cho điểm A (1; 2; 4) và mặt phẳng (P): x + y + z =1. Viết phương trình mặt cầu (S) có tâm A, biết mặt cầu (S) cắt mặt phẳng (P) theo một thiết diện là một đường tròn có chu vi 4π
Hướng dẫn:
Gọi r là bán kính thiết diện
Theo bài ra, đường tròn thiết diện có chu vi 4π
⇒ 2πr = 4π ⇒ r=2
Phương trình mặt phẳng (P): x + y + z – 1 = 0
Khoảng cách từ I đến mặt phẳng (P) là:
d(I;P)= 2√3
Gọi R là bán kính mặt cầu
⇒ R=√(r2+d2 )=4
Phương trình mặt cầu tâm I, bán kính R = 4 là:
(x-1)2+(y-2)2+(z-4)2=16
Bài 3: Cho hai mặt phẳng (P): 5x – 4y + z – 6 = 0, (Q): 2x – y + z + 7 = 0 và đường thẳng Viết phương trình mặt cầu (S) có tâm I là giao điểm của (P) và Δ sao cho (Q) cắt (S) theo một đường tròn có diện tích là 20π.
Hướng dẫn:
I là giao điểm của (P) và Δ
I thuộc Δ nên I (1+7t; 3t; 1 – 2t)
Lại có I thuộc (P) nên:
5(1+7t) -4.3t+1 -2t-6=0 ⇔ t=0
⇒ I(1;0;1)
Khoảng cách từ I đến mặt phẳng (Q) là:
d(I;(Q))= (5√6)/3
Gọi r là bán kính đường tròn giao tuyến của (S) và mặt phẳng (Q). Ta có:
πr2 =20π ⇒ r=2√5
Gọi R là bán kính mặt cầu, ta có:
⇒ R=√(r2 +d2 )= √(330)/3
Vậy phương trình mặt cầu cần tìm là:
(x-1)2+y2+(z-1)2=110/3
Bài viết liên quan
- Tìm điểm thuộc đường thẳng trong không gian thỏa mãn điều kiện chi tiết
- Viết phương trình mặt cầu có tâm tiếp xúc đường thẳng chi tiết
- Viết phương trình mặt cầu tâm I cắt đường thẳng theo dây cung có độ dài l chi tiết
- Viết phương trình mặt cầu có tâm I thuộc đường đẳng d và đi qua 2 điểm A, B chi tiết
- Mặt cầu có tâm thuộc d, cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính r và tâm I cách mặt phẳng (P) một khoảng h chi tiết