Viết phương trình đường thẳng là giao tuyến của hai mặt phẳng chi tiết
Với Viết phương trình đường thẳng là giao tuyến của hai mặt phẳng Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Viết phương trình đường thẳng là giao tuyến của hai mặt phẳng
Viết phương trình đường thẳng là giao tuyến của hai mặt phẳng
A. Phương pháp giải
Cách 1:
+ Cả hai trường hợp đều suy ra .
Mà (P) và (Q) cắt nhau
=>Véc tơ chỉ phương của d là
+ Tìm một điểm M thuộc đường thẳng d.
+ Đường thẳng d đi qua M và nhận vecto làm vecto chỉ phương
=> phương trình tham số và phương trình chính tắc của đường thẳng
Cách 2:
Nếu d là giao tuyến của hai mặt phẳng cắt nhau (P) và (Q) thì với mỗi điểm
M ( x; y;z) thuộc d là nghiệm của hệ phương trình:
Đặt x= t ( hoặc y= t hoặc z= t) thay vào hệ (*) rồi rút y; z theo t
Từ đó suy ra phương trình của đường thẳng d.
B. Ví dụ minh họa
Ví dụ 1: Trong không gian với hệ tọa độ Oxyz; gọi d là giao tuyến của hai mặt phẳng (α):x-3y+z=0 và (α'):x+y-z+4=0 . Viết phương trình tham số của đường thẳng d
A.
B.
C.
D.
Hướng dẫn giải
* Cách 1: Điểm M (x; y; z) ∈ d khi tọa độ của M là nghiệm của hệ phương trình:
Đặt y = t, ta có:
Vậy phương trình tham số của d là:
Cách 2: Ta tìm một điểm thuộc đường thẳng d bằng cách cho y = 0 trong hệ (*)
Ta có hệ
Vậy điểm M0(-2;0;2) thuộc đường thẳng d.
Vectơ chỉ phương của đường thẳng d là
Chọn 1 vectơ chỉ phương của đường thẳng d là
Vậy phương trình tham số của d là:
Chọn C.
Ví dụ 2: Trong không gian với hệ tọa độ Oxyz; gọi d là giao tuyến của mặt phẳng (P): y – 2z + 3 = 0 và mặt phẳng tọa độ (Oyz).
A.
B.
C.
D.
Hướng dẫn giải
Mặt phẳng (Oyz) có phương trình x= 0
Điểm M (x; y; z) ∈ d khi tọa độ của M là nghiệm của hệ phương trình:
là phương trình đường thẳng d
Chọn A.
Ví dụ 3: Viết phương trình đường thẳng d đi qua A (1; 2; - 1) và song song với đường thẳng giao tuyến của hai mặt phẳng (α):x+y-z+3=0 và (α'):2x-y+5z-4=0
A.
B.
C.
D.
Hướng dẫn giải
Vecto pháp tuyến của hai mặt phẳng là:
Vectơ chỉ phương của đường thẳng d là
Vậy phương trình đường thẳng d là
Chọn C.
Ví dụ 4: Viết phương trình đường thẳng d là giao tuyến của hai mặt phẳng (α):2x+y+1=0 và (β):x-y+z-1=0
A.
B.
C.
D. Đáp án khác
Hướng dẫn giải
Vecto pháp tuyến của hai mặt phẳng
Vectơ chỉ phương của đường thẳng d là
Điểm M (x; y; z) ∈ d khi đó tọa độ của M là nghiệm của hệ phương trình:
Ta tìm một điểm thuộc đường thẳng d bằng cách cho x = 0 trong hệ (*)
Ta có hệ
Vậy điểm M0(0;-1;0) thuộc đường thẳng d.
Vậy phương trình đường thẳng d là
Chọn C.
Ví dụ 5: Trong không gian với hệ tọa độ Oxyz; cho đường thẳng Δ là giao tuyến của hai mặt phẳng (α): x- 2y – z+10= 0 và (β): 2x+2y – 3z – 40= 0 . Phương trình đường thẳng d đi qua điểm M(2; 3; 1) và song song với đường thẳng Δ là
A.
B.
C.
D.
giải
Mặt phẳng (α) có vec tơ pháp tuyến
Mặt phẳng (β ) có vec tơ pháp tuyến
Đường thẳng d đi qua điểm M và có vectơ chỉ phương là
Vậy phương trình của d là:
Chọn D.
Ví dụ 6: Trong không gian với hệ tọa độ Oxyz; cho hai mặt phẳng (P): x- 2y+ 2z- 9= 0 và (Q): 3x- 5y – 2z + 9= 0 . Phương trình đường thẳng d đi qua điểm M(-2; -3; 5) và song song với hai mặt phẳng (P) và ( Q) là
A.
B.
C.
D.
Hướng dẫn giải
Mặt phẳng (P) có vectơ pháp tuyến
Mặt phẳng (Q) có vectơ pháp tuyến
Đường thẳng d đi qua điểm M( -2; -3;5) và có vectơ chỉ phương là:
Vậy phương trình của d là
Chọn A
Ví dụ 7: Trong không gian với hệ tọa độ (Oxyz) cho mặt phẳng (P): 2x- y+ 2z- 3= 0. Phương trình đường thẳng d đi qua điểm A(2; -3; -1 ), song song với hai mặt phẳng ( P) và ( Oyz) là.
A.
B.
C.
D.
Hướng dẫn giải
Mặt phẳng (P) có vectơ pháp tuyến
Mặt phẳng (Oyz) có phương trình x= 0 nên có vectơ pháp tuyến
Đường thẳng d đi qua điểm A( 2; -3; -1) và có vectơ chỉ phương là
Vậy phương trình của d là
Chọn B.
Ví dụ 8. Trong không gian với hệ trục oxyz; cho đường thẳng d đi qua A(1; 0; -3) và song song với hai mặt phẳng ( Oxy) và ( Oxz). Viết phương trình của đường thẳng d?
A.
B.
C.
D.
Hướng dẫn giải
Mặt phẳng (Oxy) có phương trình z= 0 nên có vectơ pháp tuyến
Mặt phẳng (Oxz) có phương trình y= 0 nên có vectơ pháp tuyến
Đường thẳng d đi qua điểm A(1;0;-3) và có vectơ chỉ phương là
Vậy phương trình của d là:
Chọn A.
Bài viết liên quan
- Viết phương trình đường thẳng đi qua 1 điểm và vuông góc với mặt phẳng chi tiết
- Viết phương trình đường thẳng đi qua 1 điểm và song song với đường thẳng chi tiết
- Viết phương trình đường thẳng đi qua 1 điểm, song song với mặt phẳng và vuông góc với đường thẳng chi tiết
- Viết phương trình đường thẳng nằm trong mặt phẳng, đi qua 1 điểm và vuông góc với đường thẳng chi tiết
- Viết phương trình đường thẳng đi qua 1 điểm, cắt đường thẳng d và song song với mặt phẳng chi tiết