Viết phương trình đường thẳng đi qua 1 điểm và cắt hai đường thẳng chi tiết
Với Viết phương trình đường thẳng đi qua 1 điểm và cắt hai đường thẳng Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Viết phương trình đường thẳng đi qua 1 điểm và cắt hai đường thẳng .
Viết phương trình đường thẳng đi qua 1 điểm và cắt hai đường thẳng
A. Phương pháp giải
Cách 1:
Bước 1: Viết phương trình mặt phẳng (α) đi qua điểm M và chứa đường thẳng d1
Bước 2: Tìm giao điểm A = (α)∩d2
Bước 3: Đường thẳng cần tìm là đường thẳng đi qua 2 điểm M, A
Cách 2:
Bước 1: Viết phương trình mặt phẳng (α) đi qua điểm M và chứa đường thẳng d1
Bước 2: Viết phương trình mặt phẳng (β) đi qua điểm M và chứa đường thẳng d2
Bước 3: Đường thẳng cần tìm d = (α)∩(β)
Cách 3:
Gọi A, B lần lượt là giao điểm của d và d1, d và d2
Đường thẳng d đi qua M nên A, B, M thẳng hàng
=> cùng phương =>
B. Ví dụ minh họa
Ví dụ 1: Trong không gian với hệ tọa độ Oxyz. Cho đường thẳng . Viết phương trình đường thẳng Δ đi qua điểm A(0; 2; -4) và cắt hai đường thẳng d1 và d2
A.
B.
C.
D. Tất cả sai
Hướng dẫn giải
+ Gọi (P) là mặt phẳng đi qua A và chứa d1
Đường thẳng d1 qua B( 2 ; 1 ; -1) và có vecto chỉ phương
Ta có :
Mặt phẳng (P) có một vecto phap tuyến là :
+ Gọi (Q) là mặt phẳng đi qua A và chứa d2
Đường thẳng d2 qua C( -1; 3; -2) và có vecto chỉ phương
Ta có:
Mặt phẳng (Q) có một vecto phap tuyến là :
+ Khi đó đường thẳng Δ cần tìm là giao tuyến của hai mặt phẳng (P) và (Q)
=> Một vecto chỉ phương của đường thẳng Δ là:
Do vậy phương trình Δ là:
Chọn A.
Ví dụ 2 : Phương trình đường thẳng Δ đi qua và cắt cả hai đường thẳng là :
A.
B.
C.
D.
Hướng dẫn giải
+ Gọi (P) là mặt phẳng chứa đường thẳng d và đi qua điểm A.
Đường thẳng d đi qua điểm B( 1;0 ;3) và có vecto chỉ phương
Ta có :
Mặt phẳng (P) có một vecto pháp tuyến là :
+ Gọi (Q) là mặt phẳng đi qua A và chứa d’
Đường thẳng d’ qua C( 0; -1; 2) và có vecto chỉ phương
Ta có:
Mặt phẳng (Q) có một vecto phap tuyến là :
+ Đường thẳng Δ là giao tuyến của hai mặt phẳng (P) và (Q) nên đường thẳng Δ có vectơ chỉ phương là và đi qua A nên có phương trình tham số là:
Chọn D.
Ví dụ 3: Viết phương trình đường thẳng d đi qua M (1; 1; 0) và cắt hai đường thẳng:
A.
B.
C.
D. Tất cả sai
Hướng dẫn giải
Cách 1:
- Một điểm thuộc d1 là : A (1; 0; 0)
=>
Mặt phẳng (α) đi qua điểm M và chứa đường thẳng d1 có vectơ pháp tuyến là
=>
Phương trình mặt phẳng (α) là: 0.(x – 1) + 0. (y – 1) + 1. (z – 0) = 0 hay z = 0
- Giao điểm B = (α)∩d2 là (0; 0; 0)
- Đường thẳng cần tìm là đường thẳng đi qua 2 điểm M, B
Vectơ chỉ phương của d là:
Vậy phương trình đường thẳng d là:
Cách 2:
- Tương tự cách 1: Phương trình mặt phẳng (α) là: z = 0
- Một điểm thuộc d2 là : A (0; 0; 0)
=>
Mặt phẳng (β) đi qua điểm M và chứa đường thẳng d2 có vectơ pháp tuyến là
=>
Phương trình mặt phẳng (β) là: (-1) .(x – 1) + 1. (y – 1) + 0. (z – 0) = 0 hay –x + y = 0
- Đường thẳng cần tìm d = (α)∩(β)
Vectơ chỉ phương của d là
=>
Vậy phương trình đường thẳng d là:
Cách 3:
Gọi A là giao điểm của d và d1 => A(1+t_1;-t_1;0)
Gọi B là giao điểm của d và d2 => B(0;0;2+t_2 )
=>
theo đề bài => cùng phương
=>
=>
=> là 1 vectơ chỉ phương của đường thẳng d
Vậy phương trình đường thẳng d là:
Ví dụ 4: Viết phương trình đường thẳng d biết d đi qua điểm A (1; 2; 3) và cắt hai đường thẳng
A.
B.
C.
D.
Hướng dẫn giải
- đường thẳng d1 có vecto chỉ phương . Một điểm M thuộc d1 là M (0; -1; 2)
=>
Mặt phẳng (α) đi qua điểm A và chứa đường thẳng d1 có vectơ pháp tuyến là
=>
- Đường thẳng d2 có vecto chỉ phương . Một điểm thuộc d2 là N (0; -2; 0)
=>
Mặt phẳng (β) đi qua điểm A và chứa đường thẳng d2 có vectơ pháp tuyến là
=>
- Đường thẳng cần tìm d = (α)∩(β)
Vectơ chỉ phương của d là
=>
Vậy phương trình đường thẳng d là:
Chọn B.
Ví dụ 5: Viết phương trình đường thẳng d biết d đi qua điểm M (3; 3; -2) và cắt hai đường thẳng
A.
B.
C:
D.Đáp án khác
Hướng dẫn giải
-Đường thẳng d1 có vecto chỉ phương . Một điểm thuộc d1 là : A (1; 2; 0)
=>
Mặt phẳng (α) đi qua điểm A và chứa đường thẳng d1 có vectơ pháp tuyến là
=>
Phương trình mặt phẳng (α) là: 7.(x – 1) – 4 . (y – 2) + 5. (z – 0) = 0 hay 7x – 4y + 5z + 1 = 0
- Giao điểm B = (α)∩d2 là ( -1; 1; 2)
- Đường thẳng cần tìm là đường thẳng đi qua 2 điểm M, B
Vectơ chỉ phương của d là: (BM) ⃗=(4;2; -4) hay chọn vectơ chỉ phương của d là:
Vậy phương trình đường thẳng d là:
Chọn C.
Ví dụ 6 : Trong không gian với hệ tọa độ Oxyz ; cho điểm I(1 ;1 ;2) hai đường thẳng . Phương trình đường thẳng d đi qua điểm I và cắt hai đường thẳng d1 ; d2 là.
A.
B.
C.
D.
Hướng dẫn giải
Gọi (P) là mặt phẳng qua I và chứa d1
Đường thẳng d1 đi qua M1( 3 ; -1 ; 4) và có vectơ chỉ phương
Mặt phẳng (P) có vectơ pháp tuyến:
Gọi (Q) là mặt phẳng qua I và chứa d2
Đường thẳng d2 đi qua M2( -2 ; 0 ;2) và có vectơ chỉ phương
Mặt phẳng (Q) có vectơ pháp tuyến
Đường thẳng d đi qua điểm I(1;1; 2) và có vectơ chỉ phương:
Vậy phương trình đường thẳng d là
Chọn D.
Ví dụ 7. Trong không gian với hệ tọa độ Oxyz; cho điểm A(1; 1; -2), đường thẳng và mặt phẳng . Đường thẳng Δ cắt d và (α) lần lượt tại M; N sao cho A là trung điểm của MN có phương trình là
A.
B.
C.
D.
Hướng dẫn giải
Ta có .
Do A( 1; 1; -2) là trung điểm của MN nên tọa độ N( 1- 2t; t+ 3; - 4- 3t) .
Mặt khác
Khi đó Δ đi qua A(1; 1; -2) và
Chọn D.
Ví du 8. Trong không gian với hệ tọa độ Oxyz; cho điểm A( 1; 3; 2); B ( 3; 3; 0) và đường thẳng . Gọi M là trung điểm của AB. Viết phương trình đường thẳng Δ đi qua H (1;1;1) và cắt hai đường thẳng d và OM?
A.
B.
C.
D.
Hướng dẫn giải
Tọa độ trung điểm của AB là: M(2; 3; 1)
Gọi (P) là mặt phẳng qua H và chứa d
Đường thẳng d đi qua M1 (0 ; -2 ;1) có vectơ chỉ phương
Mặt phẳng (P) có vectơ pháp tuyến:
Gọi (Q) là mặt phẳng qua H và chứa OM
Đường thẳng OM đi qua O (0; 0 ; 0) và có vectơ chỉ phương
Mặt phẳng (Q) có vectơ pháp tuyến
Đường thẳng Δ đi qua điểm H(1;1; 1) và có vectơ chỉ phương:
Vậy phương trình đường thẳng d là
Chọn D.
Bài viết liên quan
- Viết phương trình đường thẳng đi qua 1 điểm, cắt đường thẳng d và song song với mặt phẳng chi tiết
- Viết phương trình đường thẳng đi qua 1 điểm và vuông góc với 2 đường thẳng chi tiết
- Viết phương trình đường thẳng đi qua 1 điểm, vuông góc với đường thẳng d1 và cắt đường thẳng d2 chi tiết
- Viết phương trình đường thẳng đi qua 1 điểm, cắt và vuông góc với đường thẳng chi tiết
- Viết phương trình đường thẳng nằm trong mặt phẳng và cắt hai đường thẳng chi tiết