Cách Biện luận theo m số cực trị của hàm số chi tiết

Với cách biện luận theo m số cực trị của hàm số Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết cách Biện luận theo m số cực trị của hàm số .

1644
  Tải tài liệu

Biện luận theo m số cực trị của hàm số cực hay

A. Phương pháp giải & Ví dụ

Phương pháp giải

1. Cực trị của hàm số bậc ba

Cho hàm số y = ax3 + bx2 + cx + d, a ≠ 0.

y' = 0 ⇔ 3ax2 + 2bx + c = 0 (1) ; Δ'y' = b2 - 3ac

    Phương trình (1) vô nghiệm hoặc có nghiệm kép thì hàm số đã cho không có cực trị.

    Hàm số bậc 3 không có cực trị ⇔ b2 - 3ac ≤ 0

    Phương trình (1) có hai nghiệm phân biệt thì hàm số đã cho có 2 cực trị.

     Hàm số bậc 3 có 2 cực trị ⇔ b2 - 3ac > 0

2. Cực trị của hàm số bậc bốn trùng phương

Cho hàm số: y = ax4 + bx2 + c (a ≠ 0) có đồ thị là (C).

y' = 4ax3 + 2bx; y' = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    (C)có một điểm cực trị y' = 0 có 1 nghiệm x = 0 ⇔ -b/2a ≤ 0 ⇔ ab ≥ 0.

    (C)có ba điểm cực trị y' = 0 có 3 nghiệm phân biệt ⇔ -b/2a > 0 ⇔ ab < 0.

Hỏi đáp VietJack

Ví dụ minh họa

Ví dụ 1: Tìm m để hàm số y = x3 + mx + 2 có cả cực đại và cực tiểu.

Hướng dẫn

y' = 3x2 + m.

Hàm số y = x3 + mx + 2 có cả cực đại và cực tiểu khi và chỉ khi y'= 0 có hai nghiệm phân biệt.

Vậy m < 0.

Ví dụ 2: Cho hàm số y = (m - 2)x3 - mx - 2. Với giá trị nào của m thì hàm số có cực trị?

Hướng dẫn

Tập xác định D = R.

Tính y' = 3(m - 2)x2 - m.

Cho y' = 0 ⇔ 3(m - 2)x2 - m = 0   (1).

   + TH1: Xét m = 2 ⇒ y' = -2 < 0 ∀ x nên hàm số đã cho không có cực trị.

   + TH2: Xét m ≠ 2

Hàm số có cực trị khi Δ'> 0 ⇔ m(m - 2) > 0 ⇔Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy m > 2 ∨ m < 0.

Ví dụ 3: Xác định các giá trị của tham số m để đồ thị hàm số y = mx4 - m2 x2 + 2016 có 3 điểm cực trị?

Hướng dẫn

Tập xác định D = R.

Tính y' = 4mx3 - 2xm2.

Để hàm số có 3 điểm cực trị khi Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

B. Bài tập vận dụng

Bài 1: Tìm m để hàm số y = mx3 + 3mx2 - (m - 1)x - 1 có cực trị.

Bài 2: Tìm m để hàm số y = x3 - 3(m - 1)x2 + 3(2m - 4)x + m có cực trị.

Bài 3: Tìm điều kiện của tham số m để hàm số y = x3 + mx2 +(4m + 3)x + 2m - 1 có hai điểm cực trị.

Bài 4: Tìm các giá trị của m để hàm số y = x3 - 2mx + 4 không có điểm cực trị.

Bài 5: Tìm m để hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảicó cực trị.

Bài 6:Tìm m để hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải có cực trị.

Bài 7:Tìm m để hàm số y = x4 + 4mx3 + 3(m + 1)x2 + 1 có ba cực trị

Bài 8:Tìm m để hàm số y = x4 + 4mx3 + 3(m + 1)x2 + 1 có cực tiểu mà không có cực đại.

Bài viết liên quan

1644
  Tải tài liệu