Cách tìm tiệm cận của đồ thị hàm số chi tiết
Với cách tìm tiệm cận của đồ thị hàm số Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết cách tìm tiệm cận của đồ thị hàm số.
Cách tìm tiệm cận của đồ thị hàm số cực hay
A. Phương pháp giải & Ví dụ
1. Đường tiệm cận ngang
Cho hàm số y = f(x) xác định trên một khoảng vô hạn (là khoảng dạng (a; +∞),(-∞; -b) hoặc (-∞; +∞). Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn
Nhận xét: Như vậy để tìm tiệm cận ngang của đồ thị hàm số ta chỉ cần tính giới hạn của hàm số đó tại vô cực.
2. Đường tiệm cận đứng
Đường thẳng x = x0 được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn
Ví dụ minh họa
Ví dụ 1: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau
Hướng dẫn:
a. Ta có:
là tiệm cận ngang của đồ thị hàm số.
là tiệm cận đứng của đồ thị hàm số.
b. Ta có:
là tiệm cận ngang của đồ thị hàm số.
⇒ Đồ thị hàm số không có tiệm cận đứng
c. Ta có:
⇒ Đồ thị hàm số không có tiệm cận ngang.
⇒ x = 1/2 là tiệm cận đứng của đồ thị hàm số.
p>Ví dụ 2: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau
Hướng dẫn:
a. Ta có:
⇒ y = 1; y = -1 là tiệm cận ngang của đồ thị hàm số.
Đồ thị hàm số không có tiệm cận đứng.
b. Ta có:
⇒ y = 4; y = 2 là tiệm cận ngang của đồ thị hàm số.
⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.
Ví dụ 3: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau
a. b.
Hướng dẫn:
a. Đồ thị hàm số không có tiệm cận đứng
⇒ y = 11/2 là tiệm cận ngang của đồ thị hàm số
b. Đồ thị hàm số không có tiệm cận đứng
⇒ y = 1 là tiệm cận ngang của đồ thị hàm số.
B. Bài tập vận dụng
Câu 1: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Câu 2: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Câu 3: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Câu 4: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm
Câu 5: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Câu 6: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Câu 7: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Câu 1: Ta có
⇒ y = -3 là tiệm cận ngang của đồ thị hàm số.
⇒ x = -2 là tiệm cận đứng của đồ thị hàm số.
Câu 2: Ta có
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 2 là tiệm cận đứng của đồ thị hàm số.
Câu 3: Ta có
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 1; x = 2 là tiệm cận đứng của đồ thị hàm số.
Câu 4: Ta có
⇒ y = 1/2; y = -1/2 là tiệm cận ngang của đồ thị hàm số.
Câu 5: Đồ thị hàm số không có tiệm cận đứng
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
Câu 6: Ta có:
⇒ y = 0; y = 2 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 1 là tiệm cận đứng của đồ thị hàm số.
Câu 7: Đồ thị hàm số không có tiệm cận đứng
⇒ y = -1 là tiệm cận ngang của đồ thị hàm số.
Bài viết liên quan
- Cách Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số chi tiết
- Cách Tìm m để hàm số có Giá trị lớn nhất, Giá trị nhỏ nhất thoả mãn điều kiện chi tiết
- Cách Tìm tham số m để hàm số có tiệm cận chi tiết
- Cách giải bài tập về tiệm cận của hàm số chi tiết
- Cách viết phương trình tiếp tuyến của đồ thị hàm số chi tiết