Phương pháp giải Tìm giá trị lớn nhất, nhỏ nhất của số phức chi tiết
Với Phương pháp giải Tìm giá trị lớn nhất, nhỏ nhất của số phức Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Phương pháp giải Tìm giá trị lớn nhất, nhỏ nhất của số phức.
Phương pháp giải Tìm giá trị lớn nhất, nhỏ nhất của số phức
1. Phương pháp giải
Để giải được các bài toán này . cần nắm được các kiên thức sau:
+ Bất đẳng thức tam giác
• |z1 + z2| ≤ |z1| + |z2|, dấu "=" khi z1 = kz2 với k ≥ 0. Dùng cho BĐT Mincopxki:
• |z1 - z2| ≤ |z1| + |z2|, dấu "=" khi z1 = kz2 với k ≤ 0. Dùng cho BĐT vecto
• |z1 + z2| ≤ ||z1| - |z2||, dấu "=" khi z1 = kz2 với k ≤ 0.
• |z1 - z2| ≤ ||z1| - |z2||, dấu "=" khi z1 = kz2 với k ≥ 0.
+ Bất đẳng thức khác
BĐT Cauchy: A2 + B2 ≥ tìm min
BĐT Bunhia Copski:
(Ax + By)2 ≤ (A2 + B2)(x2 + y2) tìm max
BĐT Mincopxki:
tìm min. Dấu = xảy ra khi
BĐT vecto
tìm min. Dấu = xảy ra khi
2. Ví dụ minh họa
Ví dụ 1: Trong các số phức z thỏa mãn điều kiện | z + 1- 5i| = | z− + 3 - i|, tìm số phức có môđun nhỏ nhất?
A. z = + i B. z = - i
C. z = - + i D. z = - i
Hướng dẫn:
Gọi số phức z = x + yi , (x,y ∈ R) ⇒ z− = x - yi
Ta có:
|z + 1 - 5i| = |z− + 3 - i| ⇔ |x + yi + 1 - 5i| = |x - yi + 3 - i|
⇔ |(x + 1) + (y - 5)i| = |(x + 3) + (-y - 1)i|
⇔
⇔ (x + 1)2 +( y -5)2 = ( x + 3)2 + ( y + 1)2
⇔ x2 + 2x + 1 + y2 – 10y + 25
= x2 + 6x+ 9 + y2 + 2y + 1
⇔ - 4x – 12y + 16 = 0 ⇔ x + 3y – 4 = 0
⇔ x = 4 - 3y
Ta có modun của số phức z là:
|z| =
=
Đẳng thức xảy ra khi y = ⇒ x = .
Vậy min|z| = khi z = + i.
Chọn A.
Ví dụ 2: Trong các số phức z có phần thực , phần ảo không âm và thỏa mãn: = 1 . Tìm số phức z sao cho biểu thức sau đạt giá trị lớn nhất
P = |z2 - z− 2| - (z2 - z− 2).i.[z(1 - i) + z−(1 + i)]
A. z = + i B. z = + i
C. z = + i D. z = 1 + i
Hướng dẫn:
Điều kiện: z ≠ 1 - 2i .
Gọi số phức cần tìm là z = x + yi,(x, y ∈ R; x,y > 0)
Theo giả thiết ta có:
= 1 ⇔ |z - 3| = |z - 1 + 2i|.
⇔ |x + yi - 3| = |x + yi - 1 + 2i|
⇔ |(x - 3) + yi| = |(x - 1) + (y + 2)i|
⇔
⇔ (x – 3)2 + y2 = (x - 1)2 + ( y + 2)2
⇔ x2 – 6x + 9 + y2
= x2 – 2x + 1 + y2 + 4y + 4
⇔ - 4x – 4y + 4 = 0 ⇔ x + y – 1 = 0
Số phức liên hợp với số phức z là:
z− = x - yi ⇒ z2 - z− 2 = 4xy.i
⇒ |z2 - z− 2| = 4xy (vì x, y không âm)
z(1 - i) + z−(1 + i) = 2x + 2y
Do đó,
P = 16x2y2 + 4xy.(2x+ 2y) = 16x2y2 + 8xy.
Đặt t = xy ⇒ 0 ≤ t ≤ = , ta có
P = 16t2 + 8t; t ∈ [0; ] .
+ Xét hàm số f(t) = 16t2 + 8t liên tục trên [0; ] .
f'(t) = 32t + 8t; f'(t) = 0
⇔ t = 0 ∪ t = - (loại)
f(0) = 0; f( ) = ⇒
⇔ t = ; = 0 ⇔ t = 0
Khi t = ⇒ xy =
Lại có; x+ y – 1= 0 nên x = y = .
Vậy P đạt giá trị lớn nhất bằng khi
z = + i .
Chọn C.
Ví dụ 3: Biết rằng số phức z thỏa mãn:
w = (z + 3 - i).(z− + 1 + 3i) là một số thực. Tìm giá trị nhỏ nhất của |z|?
A. √3 B. 2 C. 2√3 D. 2√2
Hướng dẫn:
Đặt z = x + yi (x, y ), số phức liên hợp với số phức z là z− = x - yi
Ta có: w = (z + 3 - i).(z− + 1 + 3i)
⇔ w = ( x + yi + 3 - i) . ( x - yi + 1 + 3i)
⇔ w = [ (x+ 3) + (y – 1).i ].[ (x+ 1)+ ( 3- y).i ]
⇔ w = ( x+ 3).(x+ 1) + ( x + 3). (3- y).i + ( y -1). ( x+ 1)i + ( y – 1). (3- y).i2
⇔ w = x2 +4x + 3 + ( 3x - xy + 9 - 3y).i + (xy + y – x – 1).i - ( - y2 + 4y – 3)
⇔ w = ( x2 + 4x +3 + y2 – 4y + 3) + ( 3x – xy + 9 – 3y + xy + y – x – 1).i
⇔ w = (x2 + y2 + 4x - 4y + 6) + ( 2x – 2y + 8).i
Để w là một số thực khi và chỉ khi
2x - 2y + 8 = 0 hay x - y + 4 = 0
⇒ Tập hợp các điểm biểu diễn của z là đường thẳng d: x – y + 4 = 0.
M(x;y) là điểm biểu diễn của z , z có môđun nhỏ nhất khi và chỉ khi độ dài OM nhỏ nhất
Khi và chỉ khi M là hình chiếu của O trên đường thẳng d.
⇒ OM ⊥ d
* Cách 1: Đường thẳng OM có dạng:
x + y + c = 0 .
Mà điểm O(0;0) thuộc đường thẳng OM nên ta có: 0 + 0 + c = 0 ⇒ c = 0
Do đó phương trình đường thẳng OM:
x + y = 0
Khi đó, tọa độ M là nghiệm hệ phương trình :
⇒ M(-2; 2) suy ra số phức cần tìm là
z = -2 + 2i.
⇒ |z| = = 2√2
* Cách 2. Khi đó: |z| = d(O; d)
= = 2√2
Chọn D.