Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng chi tiết
Với Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng Toán lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải chi tiết giúp học sinh biết Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng.
Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng
Phương pháp giải
Cách 1:
1. Vecto pháp tuyến của mặt phẳng (P) là: n→ (A;B;C)
2. Do mặt phẳng (α) // (P) nên vecto pháp tuyến của mặt phẳng (α) là n→ (A;B;C).
3. Phương trình mặt phẳng (α):
A(x -xo ) +B(y -yo ) +C(z -zo) =0
Cách 2:
1. Mặt phẳng (α) // (P) nên phương trình mặt phẳng (α) có dạng:
Ax +By +Cz +D'=0 (*) với D'≠D
2. Vì mặt phẳng (α) đi qua điểm M (xo ;yo ;zo ) nên thay tọa độ điểm
M (xo ;yo ;zo ) vào (*) tìm đươc D’
Ví dụ minh họa
Bài 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M (0; 1; 2) và song song với mặt phẳng (Q): 2x – 4y + 2 = 0.
Hướng dẫn:
Mặt phẳng (P) song song với mặt phẳng (Q) nên vecto pháp tuyến của mặt phẳng (Q) là n→ (2; -4;0)
Mặt phẳng (P) đi qua điểm M(0; 1; 2) và có vecto pháp tuyến n→ (2; -4;0) nên có phương trình là:
2(x -0) -4(y -1) +0 . (z -2) =0
⇔2x -4y +4 =0
⇔x -2y +2 =0
Bài 2: Viết phương trình mặt phẳng (P) đi qua điểm M (-1; 2; -3) và song song với mặt phẳng (Oxy)
Hướng dẫn:
Phương trình mặt phẳng (Oxy) là: z=0
Do mặt phẳng (P) song song song với mặt phẳng (Oxy) nên mặt phẳng (P) có dạng: z +c =0 (z≠0)
Do mặt phẳng (P) đi qua điểm M (-1; 2; -3) nên ta có: -3 +c = 0 ⇔ c =3
Vậy phương trình mặt phẳng (P) là: z +3 =0
Bài viết liên quan
- Viết phương trình mặt cầu có tâm tiếp xúc mặt phẳng chi tiết
- Viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến chi tiết
- Viết phương trình mặt phẳng đi qua 3 điểm chi tiết
- Viết phương trình mặt phẳng đi qua 1 điểm và vuông góc với đường thẳng chi tiết
- Viết phương trình mặt phẳng chứa đường thẳng và vuông góc với mặt phẳng chi tiết