Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Với Cách chứng minh tứ giác nội tiếp cực hay, chi tiết Toán học lớp 9 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách chứng minh tứ giác nội tiếp cực hay, chi tiết.

594
  Tải tài liệu

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

A. Phương pháp giải

Đối với chứng minh tứ giác nội tiếp, ta sử dụng các dấu hiệu nhận biết sau:

+ Tứ giác có tổng hai góc đối bằng 180o.

+ Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện.

+ Tứ giác có bốn đỉnh cách đều một điểm (mà ta có thể xác định được). Điểm đó là tâm của đường tròn ngoại tiếp tứ giác đó.

+ Tứ giác có hai đỉnh kề nhau cùng nhìn một cạnh chứa hai đỉnh còn lại dưới một góc α.

+ Chú ý: Để chứng minh một tứ giác là tứ giác nội tiếp ta có thể chứng minh tứ giác đó là một trong các hình sau: Hình chữ nhật, hình vuông, hình thang cân.

Đối với bài toán tính góc, ta sử dụng các tính chất của tứ giác nội tiếp để tính toán.

B. Ví dụ minh họa

Ví dụ 1 : Qua điểm B nằm ở bên ngoài đường tròn (O), vẽ hai tiếp tuyến BC và BD với đường tròn (O), (C, D là các tiếp điểm). Từ B vẽ cát tuyến BMN (M nằm giữa B và N, tia BN nằm giữa hai tia BC và BO), gọi H là giao điểm của BO và CD.

a. Chứng minh BM.BN = BH.BO.

b. Chứng minh tứ giác OHMN nội tiếp.

Hướng dẫn giải

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

a. Ta có: BC = BD (tính chất hai tiếp tuyến cắt nhau)

OC = OD (bán kính đường tròn (O))

BO là đường trung trực của CD ⇒ BO ⊥ CD (1)

Xét ΔBMC và ΔBCN có:

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 : chung

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 (cùng chắn cung Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 )

⇒ ΔBMC ∼ ΔBCN (g – g)

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 ⇒ BM.BN = BC2 (2)

Do (1) ta có △BCO vuông tại C, đường cao CH:

⇒ BC2 = BH.BO (hệ thức lượng trong tam giác vuông) (3)

Từ (2) và (3) ⇒ BM.BN = BH.BO.

b. Ta có: BM.BN = BH.BO (chứng minh trên)

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

ΔBMO và ΔBHN có:

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 : chung

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

⇒ ΔBMO ∼ ΔBHN (c – g – c)

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9(hai góc tương ứng)

⇒ Tứ giác OHMN nội tiếp (hai góc bằng nhau cùng nhìn một cạnh).

Ví dụ 2 : Tính số đo các góc của tứ giác ABCD

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Hướng dẫn giải

Do ABCD là tứ giác nội tiếp nên Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 nên Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Ta có: Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Vậy Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 .

Ví dụ 3 : Cho đường tròn tâm O. Từ điểm A ở bên ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC với đường tròn (B, C là hai tiếp điểm). Trên BC lấy điểm M, vẽ đường thẳng vuông góc với OM tại M, cắt AB và AC lần lượt tại E và D. Chứng minh các tứ giác EBOM và DCMO nội tiếp được trong đường tròn. Xác định tâm các đường tròn đó.

Hướng dẫn giải

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

– Chứng minh tứ giác EBOM nội tiếp

Có OM ⊥ ME (gt) nên góc Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

OB ⊥ BE (BE là tiếp tuyến của (O)) nên góc Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Tứ giác EBOM nội tiếp trong đường tròn đường kính OE.

– Chứng minh tứ giác DCMO nội tiếp

Có OM ⊥ DM (gt) nên góc Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

CD ⊥ OC (CĐ là tiếp tuyến của (O)) nên góc Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Nên M, C là hai đỉnh liên tiếp cùng nhìn OD dưới một góc 90o

⇒ Tứ giác DCMO nội tiếp trong đường tròn đường kính OD.

Hỏi đáp VietJack

C. Bài tập trắc nghiệm

Câu 1 : Hình nào sau đây không nội tiếp đường tròn?

A. Hình vuông

B. Hình chữ nhật

C. Hình thoi

D. Hình thang cân

Hướng dẫn giải

Đáp án C

Hình vuông, hình chữ nhật và hình thang cân là các hình nội tiếp đường tròn.

Hình thoi là hình không nội tiếp đường tròn.

Câu 2 : Cho tứ giác ABCD nội tiếp đường tròn (O) đường kính BD. Các đường chéo AC và BD cắt nhau tại E. Biết rằng AB = BC = 7,5cm và Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 . Tính độ dài đường kính BD.

A. 11cm

B. 12cm

C. 14cm

D. 15cm

Hướng dẫn giải

Đáp án D

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Do tứ giác ABCD nội tiếp (O) nên: Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Ta có Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 là góc nội tiếp chắn Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 là góc nội tiếp chắn Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 (hai góc nội tiếp chắn hai cung bằng nhau)

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Ta có : Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 ( góc nội tiếp chắn nửa đường tròn)

⇒ tam giác ABD vuông tại A

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Câu 3 : Cho tứ giác ABCD nội tiếp trong đường tròn. Kéo dài AB về phía B một đoạn BE. Biết Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 . Số đo góc EBC là:

A.66

B.92

C.70

D.88

Hướng dẫn giải

Đáp án B

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Vì tứ giác ABCD nội tiếp nên: Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Mà: Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 (hai góc kề bù)

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 .

Câu 4 : Số đo góc A trong hình vẽ

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Hướng dẫn giải

Đáp án D

Ta có tứ giác ABCD nội tiếp đường tròn (O)

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Câu 5 : Cho tam giác nhọn ABC. Đường tròn đường kính BC cắt AB và AC theo thứ tự tại D và E. Gọi H là giao điểm của BE và CD. Tia AH cắt BC tại F. Số tứ giác nội tiếp có trong hình vẽ là:

A. 4

B. 6

C. 7

D. 8

Hướng dẫn giải

Đáp án B

Các tứ giác nội tiếp ADHE, BDHF, FHEC, BDEC, AEFB, ADFC.

Vậy có 6 tứ giác nội tiếp.

Câu 6 : Cho tam giác ABC vuông tại A, đường cao AH nội tiếp đường tròn (O;R) gọi I và K theo thứ tự là điểm đối xứng của H qua hai cạnh AB và AC. Khẳng định nào sau đây đúng?

A. Tứ giác AHBI nội tiếp đường tròn đường kính AB

B. Tứ giác AHCK nội tiếp đường tròn đường kính AC

C. Ba điểm I, A, K thẳng hàng

D. A, B, C đều đúng.

Hướng dẫn giải

Đáp án D

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Ta có AH ⊥ BC Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 ( I đối xứng với H qua AB)

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 ( K đối xứng với H qua AC)

Xét tứ giác AIBH, có: Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

⇒ Tứ giác AIBH nội tiếp đường tròn đường kính AB

Xét tứ giác AKCH, có: Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

⇒ Tứ giác AKCH nội tiếp đường tròn đường kính AC

Ta lại có: Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 (do tính chất đối xứng)

 Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Suy ra ba điểm I, A, K thẳng hàng.

Do đó, cả A, B, C đều đúng.

Câu 7 : Cho hình vẽ sau, biết Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 . Đáp án nào sau đây SAI

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Hướng dẫn giải

Đáp án D

Ta có: Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 (hai góc kề bù)

Ta lại có : Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 (ABCD là tứ giác nội tiếp đường tròn)

Lại có Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 là góc ngoài của ΔECB

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 (ABCD là tứ giác nội tiếp đường tròn)

Vậy Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Câu 8 : Phát biểu nào sau đây sai ?

A. Tứ giác nội tiếp có 4 đỉnh cùng nằm trên cùng một đường tròn

B. Nếu một tứ giác có tổng hai góc đối bằng 180o thì tứ giác đó nội tiếp đường tròn.

C. Trong một tứ giác nội tiếp tổng hai góc bất kì bằng 180o

D. Hinh chữ nhật luôn nội tiếp đường tròn.

Hướng dẫn giải

Đáp án C

Trong tứ giác nội tiếp, tổng hai góc đối mới bằng 180o .

Câu 9 : Cho hình vuông ABCD nội tiếp đường tròn (O;R). Độ dài cạnh hình vuông bằng:

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Hướng dẫn giải

Đáp án A

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Đặt cạnh góc vuông là x

Ta có hình vuông ABCD nội tiếp (O; R)

Nên O là giao điểm của hai đường chéo, và OA = OB = OC = OD = R.

Kẻ OH vuông góc với BC.

Tam giác OBC vuông cân tại O, có OH ⊥ BC

⇒ H là trung điểm của BC

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Xét tam giác OHB vuông tại H, có :

OB2 = OH2 + BH2

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9

Vậy cạnh hình vuông có độ dài là Cách chứng minh tứ giác nội tiếp cực hay, chi tiết - Toán lớp 9 .

Câu 10 : Các hình nào sau đây nội tiếp đường tròn?

A. Hình thang, hình chữ nhật

B. Hình thang cân, hình bình hành

C. Hình thoi, hình vuông

D. Hình thang cân, hình chữ nhật, hình vuông

Hướng dẫn giải

Đáp án D

Hình thang cân, hình chữ nhật, hình vuông là các hình nội tiếp đường tròn.

 

Bài viết liên quan

594
  Tải tài liệu