Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu
Với Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu Toán học lớp 9 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu.
Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu
A. Phương pháp giải
- Cho phương trình ax2 + bx + c = 0 (a ≠ 0). Khi đó
+ Điều kiện để phương trình có 2 nghiệm trái dấu: a.c < 0
+ Điều kiện để phương trình có 2 nghiệm cùng dấu:
( nếu là 2 nghiệm phân biệt cùng dấu ta thay ∆ ≥ 0 bởi ∆ > 0)
+ Điều kiện để phương trình có 2 nghiệm cùng dấu dương:
( nếu là 2 nghiệm phân biệt cùng dấu ta thay ∆ ≥ 0 bởi ∆ > 0)
+ Điều kiện để phương trình có 2 nghiệm cùng dấu âm:
( nếu là 2 nghiệm phân biệt cùng dấu ta thay ∆ ≥ 0 bởi ∆ > 0)
Ví dụ 1: Tìm m để phương trình x2 – (2m + 3)x + m = 0 có hai nghiệm phân biệt cùng dấu âm < /p>
Giải
Phương trình có 2 nghiệm phân biệt cùng dấu âm khi
Không có giá trị nào của m thỏa mãn (1), (2) và (3)
Vậy không tồn tại m thỏa mãn đề bài
Ví dụ 2: Tìm m để phương trình x2 – (m2 + 1)x + m2 – 7m + 12 = 0 có hai nghiệm trái dấu
Giải
Phương trình có 2 nghiệm trái dấu khi a.c < 0
Vậy với 3 < m < 4 thì phương trình có hai nghiệm trái dấu
Ví dụ 3: Tìm m để phương trình 3x2 – 4mx + m < 2 – 2m - 3 = 0 có hai nghiệm phân biệt cùng dấu
Giải
Phương trình có 2 nghiệm phân biệt cùng dấu khi
Vậy với m > 3 hoặc m < -1 thì phương trình có hai nghiệm phân biệt cùng dấu
B. Bài tập
Câu 1: Cho phương trình mx2 + 2(m - 2)x + m - 3 = 0. Xác định m để phương trình có hai nghiệm trái dấu.
A. m > 0
B. 1 < m < -1
C. 0
D. m < 3
Giải
Để phương trình có hai nghiệm trái dấu thì m ≠ 0 và a.c < 0
Suy ra các giá trị m cần tìm là 0 < m < 3
Đáp án đúng là C
Câu 2: Tìm m để phương trình mx2 – (5m – 2)x + 6m – 5 = 0 có hai nghiệm đối nhau.
Giải
Xét phương trình: mx2 - (5m - 2)x + 6m - 5 = 0
Để để phương trình có hai nghiệm đối nhau thì:
Vậy thì phương trình có hai nghiệm đối nhau.
Đáp án đúng là B
Câu 3: Tìm giá trị m để phương trình 2x2 + mx + m - 3 = 0 có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.
A. 0 < m < 3
B. -1 < m < 3
C. m < 2
D. m > -3
Giải
Để phương trình có hai nghiệm trái dấu thì: a.c < 0 ⇔ 2.(m-3) < 0 ⇔ m < 3 (1)
Giả sử phương trình có hai nghiệm trái dấu: x1 < 0 < x2
Với m < 3 , áp dụng hệ thức Vi- ét ta có:
Vì nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương nên:
|x1| > |x2| trong đó x1 < 0; x2 > 0 nên (2)
Từ (1) và (2) suy ra 0 < m < 3
Vậy 0 < m < 3 thì phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.
Đáp án đúng là A
Câu 4: Tìm giá trị m để phương trình x2 – 2(m – 1)x + m – 3 = 0 có 2 nghiệm trái dấu và bằng nhau về giá trị tuyệt đối.
A. m = 1
B. m = 4
C. m = 2
D. m = -3
Giải
Xét phương trình: x2 – 2(m – 1)x + m – 3 = 0 có: a = 1, b = -2(m – 1), c = m – 3
Phương trình có 2 nghiệm trái dấu và bằng nhau về giá trị tuyệt đối
Vậy với m = 1 thì phương trình đã cho có hai nghiệm trái dấu và bằng nhau về giá trị tuyệt đối.
Đáp án đúng là A
Câu 5: Cho phương trình: x2 - 2mx + 2m - 4 = 0. Có bao nhiêu giá trị nguyên của m nhỏ hơn 2020 để phương trình có 2 nghiệm dương phân biệt.
A. 2016
B. 2017
C. 2018
D. 2019
Giải
Phương trình có 2 nghiệm phân biệt cùng dấu dương khi
Với Δ' > 0 ⇔ m2 - (2m - 4) > 0 ⇔ (m2 - 2m + 1) + 3 > 0 ⇔ (m - 1)2 + 3 > 0 ∀ m(1)
Với P > 0 ⇔ 2m - 4 > 0 ⇔ m > 2(2)
Với S > 0 ⇔ 2m > 0 ⇔ m > 0(3)
Từ (1), (2), (3) ta có các giá trị m cần tìm là m > 2
Suy ra số các giá trị nguyên của m thỏa mãn: 2 < m < 2020 có 2017 số
Đáp án đúng là B
Câu 6: Cho phương trình: x2 - 2mx - 6m - 9 = 0. Tìm m để phương trình có 2 nghiệm trái dấu thỏa mãn x12+x22=13
Giải
Phương trình có 2 nghiệm trái dấu khi:
Theo Vi-et ta có:
Đáp án đúng là D
Câu 7: Cho phương trình: x2 - 8x + m + 5 = 0. Gọi S là tập hợp chứa tất cả các giá trị nguyên của m để phương trình có 2 nghiệm cùng dấu. Tính tổng tất cả các phần tử của S
A. 30
B. 56
C. 18
D. 29
Giải
Phương trình có 2 nghiệm cùng dấu khi
Với Δ' ≥ 0 ⇔ 16 - m - 5 ≥ 0 ⇔ 11-m ≥ 0 ⇔ m ≤ 11 (1)
Với P > 0 ⇔ m + 5 > 0 ⇔ m > -5(2)
Từ (1), (2) ta có các giá trị m cần tìm là -5 < m ≤ 11
Suy ra S = {-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11}
Vậy tổng tất cả các phần tử của S là 56
Đáp án đúng là B
Câu 8: Cho phương trình: 2x2 + (2m - 1)x + m - 1 = 0. Tìm m để phương trình có 2 nghiệm âm.
A. m > 3
B. m < -1
C. m > 1
D. m < -3
Giải
Phương trình có 2 nghiệm cùng dấu âm khi
Từ (1), (2), (3) ta có các giá trị của m cần tìm là: m > 1
Đáp án đúng là C
Câu 9: Cho phương trình x2 - 2x - 1 = 0 (m là tham số). Tìm khẳng định đúng
A. Phương trình luôn có hai nghiệm trái dấu.
B. Phương trình vô nghiệm < /p>
C. Phương trình có hai nghiệm cùng dấu
D. Phương trình có nghiệm kép
Giải
Vì ac = 1.(-1) = -1 < 0 nên phương trình có 2 nghiệm trái dấu
Đáp án đúng là A
Câu 10: Cho phương trình x2 - (2m + 1)x + m2 + m - 6 = 0. Tìm m để phương trình có 2 nghiệm âm.
A. m > 2
B. m < -4
C. m > 6
D. m < -3
Giải
Phương trình có 2 nghiệm cùng dấu âm khi
Δ = (2m + 1)2 - 4(m2 + m - 6) = 4m2 + 4m + 1 - 4m2 - 4m + 24 = 25 > 0 với mọi giá trị của m(1)
Suy ra m < -3 đồng thời thỏa mãn (1), (2) và (3)
Vậy m < -3 thỏa mãn đề bài.
Đáp án đúng là D
Bài viết liên quan
- Cách phân tích đa thức ax mũ 2 + bx + c thành nhân tử để giải phương trình bậc hai
- Cách lập phương trình bậc hai khi biết hai nghiệm của phương trình đó
- Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện
- Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào tham số | Tìm hệ thức liên hệ giữa x1 x2 độc lập với m
- Cách giải hệ phương trình đối xứng hai ẩn cực hay