Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án
Với Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án Toán học lớp 9 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án.
Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án
A. Phương pháp giải
Giải phương trình: ax2 + bx + c = 0, trong đó a, b, c là các biểu thức phụ thuộc vào m.
Bước 1: Xác định các hệ số a, b, c (hoặc a, b', c ).
Bước 2: Giải phương trình theo m:
+) Với giá trị của m mà a = 0, giải phương trình bậc nhất.
+) Với giá trị của m mà a ≠ 0, giải phương trình bậc hai: Tính Δ = b2 - 4ac (hoặc Δ' = b'2 - 4ac), xét các trường hợp của Δ chứa tham số và tìm nghiệm theo tham số.
Bước 3: Kết luận.
Biện luận phương trình:
- Phương trình có nghiệm khi:
+) Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.
+) Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm.
- Phương trình có một nghiệm khi:
+) Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.
+) Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm kép.
- Phương trình có hai nghiệm phân biệt khi: Giá trị của m mà a ≠ 0, phương trình bậc hai có hai nghiệm phân biệt.
B. Các ví dụ điển hình
Ví dụ 1: Cho phương trình x2 + mx - 6m2 = 0 với m là tham số. Chọn khẳng định sai:
Lời giải
Chọn A
Ví dụ 2: Cho phương trình mx2 - 2(m + 1)x + m + 2 = 0. Chọn kết luận đúng.
Lời giải
Chọn B
Ví dụ 3: Khi phương trình x2 + (m + 1)x - m = 0 có nghiệm kép, giá trị của nghiệm kép là:
Lời giải
Chọn C
Bài viết liên quan
- Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án
- Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án
- Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án
- Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án
- Các dạng bài tập về phương trình bậc hai một ẩn cực hay, có đáp án