Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết
Với Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết Toán học lớp 9 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết.
Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết
A. Phương pháp giải
Phương trình bậc hai một ẩn có dạng ax2 + bx + c = 0 (a ≠ 0). Để giải phương trình ta làm như sau
B1: Xác định các hệ số a, b, c
B2: Tính ∆ = b2 - 4ac
+ Nếu ∆ < 0 thì phương trình vô nghiệm
+ Nếu ∆ = 0 thì phương trình có nghiệm kép:
+ Nếu ∆ > 0 thì phương trình có 2 nghiệm phân biệt:
Ví dụ 1: Giải các phương trình sau:
a. 2x2 + 3 = 0
b. -7x2 = 0
c. 3x2 – 12 = 0
Giải
Vậy phương trình có 2 nghiệm phân biệt: x = 2, x = -2
*Nếu hệ số c = 0 thì phương trình có dạng: ax2 + bx = 0 (3)
Để giải phương trình (3) ngoài cách dùng ∆ hoặc ∆ꞌ ở trên ta có thể làm như sau
Ví dụ 2: Giải các phương trình sau
a. 3x2 +8x = 0
b. 5x2 – 10x = 0
Giải
a. Ta có:
Vậy phương trình có 2 nghiệm là: x = 0,
b. Ta có:
Vậy phương trình có 2 nghiệm là: x = 0, x = 2
Ví dụ 3: Giải phương trình x2 + 3x + 3 = 0
Giải
Ta có: a = 1; b = 3; c = 3 ⇒ ∆ = b2 – 4ac = 9 – 12 = - 3 < 0
Vậy phương trình vô nghiệm.
Ví dụ 4: Giải phương trình sau:
Giải
Ta có: a = 3; bꞌ = -√3 ; c = -3 ⇒ ∆ꞌ = (bꞌ)2 - ac =
Vậy phương trình có hai nghiệm phân biệt:
* Nếu hệ số b = 0 thì phương trình có dạng: ax2 + c = 0 (2)
Để giải phương trình (2) ngoài cách dùng ∆ hoặc ∆ꞌ ở trên ta có thể làm như sau:
+ Nếu ac > 0 thì phương trình vô nghiệm
+ Nếu ac = 0 thì phương trình có nghiệm kép x = 0
+ Nếu ac < 0 thì phương trình có 2 nghiệm phân biệt
Ví dụ 5: Giải phương trình x2 + x - 5 = 0
Giải
Ta có: a = 1; b = 1; c = - 5 ⇒ ∆ = b2 – 4ac = 1 + 20 = 21 > 0
Vậy phương trình có hai nghiệm phân biệt:
Ví dụ 6: Giải phương trình x2 + 2x + 2 = 0
Giải
Ta có: a = 1; b = 2; c = 2
⇒ ∆ = b2 – 4ac =
Vậy phương trình có nghiệm kép:
* Công thức nghiệm thu gọn: Dùng khi hệ số b = 2bꞌ
Phương trình ax2 + bx + c = 0 (a ≠ 0) có ∆ꞌ = (bꞌ)2 - ac (b = 2bꞌ)
+ Nếu ∆ꞌ < 0 thì phương trình vô nghiệm
+ Nếu ∆ꞌ = 0 thì phương trình có nghiệm kép:
+ Nếu ∆ꞌ > 0 thì phương trình có 2 nghiệm phân biệt
B. Bài tập
Câu 1: Số thực nào sau đây là nghiệm của phương trình x2 - x + 8 = 0
A. 2
B. 10
C. -15
D. Không có
Giải
Ta có: a = 1; b = -1; c = 8 ⇒ ∆ = b2 – 4ac = (-1)2 – 4.1.8 = -31 < 0
Vậy phương trình vô nghiệm
Vậy đáp án đúng là D
Câu 2: Số nghiệm của phương trình 4x2 - 6x = -2x là
A. 1
B. 0
C. 2
D. 3
Giải
Vậy đáp án đúng là C
Câu 3: Nghiệm của phương trình x2 + 13x = 0 là
A. 13 và -13
B. 0 và -13
C. 0 và 13
D. Vô nghiệm
Giải
Phương trình x2 + 13x = 0
Vậy đáp án đúng là B
Câu 4: Cho phương trình 2x2 + 4x + 1 = -x2 - x – 1. Tính |x1 - x2|
Giải
Phương trình 2x2 + 4x + 1 = -x2 - x – 1
Ta có: a = 3; b = 5; c = 2 ⇔ ∆ = b2 – 4ac = (5)2 – 4.3.2 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt
Vậy đáp án đúng là A
Câu 5: Cho phương trình x2 - 10x + 21 = 0. Khẳng định nào sau đây đúng
A. Phương trình vô nghiệm
B. Phương trình có nghiệm không nguyên
C. Phương trình có 1 nghiệm
D. Phương trình có 2 nghiệm nguyên
Giải
Ta có: a = 1; b = -10; c = 21 ⇒ ∆ = b2 – 4ac = (-10)2 – 4.1.21 = 16 > 0
Phương trình có hai nghiệm phân biệt
Vậy đáp án đúng là D
Câu 6: Giả sử x1 < x2 là hai nghiệm của phương trình x2 -7x - 8 = 0. Tính 2x1
A. -2
B. 1
C. -1
D. 6
Giải
Ta có: a = 1; b = -7; c = -8 ⇒ ∆ = b2 – 4ac = (-7)2 – 4.1.(-8) = 81 > 0
Phương trình có hai nghiệm phân biệt
Suy ra x1 = -1 do đó 2x1 = -2
Vậy đáp án đúng là A
Câu 7: Nghiệm của phương trình 3x2 + 15 = 0 là
Giải
Phương trình 3x2 + 15 = 0 ⇔ 3x2 = -15 ⇔ x2 = -5 (vô nghiệm)
Vậy đáp án đúng là D
Câu 8: Một nghiệm của phương trình 3x2 + 5x – 2 = 0 là
A. -2
B. -1
C. -5
D. 0
Giải
Ta có: a = 3; b = 5; c = -2 ⇒ ∆ = b2 – 4ac = 52 – 4.3.(-2) = 49 > 0
Phương trình có hai nghiệm phân biệt:
Vậy đáp án đúng là A
Câu 9: Số nghiệm của phương trình 3x2 - 6x + 3 = 0 là
A. 3
B. 2
C. 1
D. 0
Giải
Ta có: a = 3; bꞌ = -3; c = 3 ⇒ ∆ꞌ = (bꞌ)2 - ac = (-3)2 – 3.3 = 9 - 9 = 0
Suy ra phương trình có một nghiệm
Vậy đáp án đúng là C
Câu 10: Giả sử x1, x2 (x1 > x2) là hai nghiệm của phương trình 5x2 - 6x + 1 = 0. Tính 2x1 + 5x2
A. 6
B. 5
C. 4
D. 3
Giải
Ta có: a = 5; bꞌ = -3; c = 1 ⇒ ∆ꞌ =(bꞌ)2 - ac = (-3)2 – 5.1 = 9 - 5 = 4 > 0
Suy ra phương trình có hai nghiệm phân biệt
Vậy đáp án đúng là D
Bài viết liên quan
- Cách tìm giao điểm của parabol P và đường thẳng hay, chi tiết
- Cách xác định các hệ số a, b, c của phương trình bậc hai một ẩn
- Cách giải các dạng toán giải phương trình bậc hai một ẩn cực hay
- Cách giải và biện luận phương trình bậc hai một ẩn cực hay
- Cách giải hệ phương trình 2 ẩn bậc hai cực hay, chi tiết