Phương pháp giải phương trình trùng phương cực hay
Với Phương pháp giải phương trình trùng phương cực hay Toán học lớp 9 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Phương pháp giải phương trình trùng phương cực hay.
Phương pháp giải phương trình trùng phương cực hay
A. Phương pháp giải
1. Phương pháp đặt ẩn phụ
Cho phương trình ax4 + bx2 + c = 0 (a ≠ 0) (1)
B1: Đặt t = x2 (t ≥ 0). Phương trình (1) trở thành: at2 + bt + c = 0 (a ≠ 0) (2)
B2: Giải phương trình (2) tìm t, lấy nghiệm t thỏa mãn điều kiện (t ≥ 0)
B3: Với mỗi giá trị t tìm được ở B2 thay vào đẳng thức t = x2 tìm x
Ví dụ 1: Giải phương trình x4 + 7x2 + 10 = 0 (1)
Giải
Đặt t = x2 (t ≥ 0). Phương trình (1) trở thành: t2 + 7t + 10 = 0 (2)
Ta có: ∆ = 72 – 4.1.10 = 49 – 40 = 9 > 0
Vậy phương trình (2) có 2 nghiệm phân biệt:
Vậy phương trình (1) vô nghiệm
Ví dụ 2: Giải phương trình 4x4 + x2 - 5 = 0 (1)
Giải
Đặt t = x2 (t ≥ 0). Phương trình (1) trở thành: 4t2 + t - 5 = 0 (2)
(2) là phương trình bậc hai có: a + b + c = 0 nên có 2 nghiệm phân biệt
Với t = 1 thì 1 = x2 ⇔ x = ± 1
Vậy phương trình (1) có 2 nghiệm: x = 1, x = -1
2. Phương pháp đưa về phương trình tích
Ví dụ 1: Giải phương trình x4 + 7x2 + 10 = 0 (1)
Giải
Hai phương trình (*) và (**) vô nghiệm nên phương trình (1) vô nghiệm
Ví dụ 2: Giải phương trình 4x4 + x2 - 5 = 0 (1)
Giải
Phương trình (*) vô nghiệm
Phương trình (**) ⇔ x2 = 1 ⇔ x = ±1.
Vậy phương trình (1) có 2 nghiệm x = ±1
B. Bài tập
Câu 1: Số nghiệm của phương trình: 3x4 + 4x2 + 1 = 0 (1) là
A. 0
B. 1
C. 2
D. 4
Giải
Đặt t = x2 (t ≥ 0). Phương trình (1) trở thành: 3t2 + 4t + 1 = 0 (2)
Phương trình (2) có a – b + c = 0 nên phương trình có 2 nghiệm
Vậy phương trình (1) vô nghiệm
Đáp án đúng là A
Câu 2: Số nghiệm của phương trình: -15x4 - 26x2 + 10 = 0 (1) là
A. 1
B. 2
C. 3
D. 4
Giải
Đặt t = x2 (t ≥ 0). Phương trình (1) trở thành: -15t2 - 26t +10 = 0 (2)
Ta có: ∆ꞌ = (-13)2 – (-15).10 = 169 + 150 = 319 > 0
Vậy phương trình (2) có 2 nghiệm phân biệt:
Vậy phương trình có 2 nghiệm
Đáp án đúng là B
Câu 3: Số nghiệm của phương trình: (x+1)4 – 5(x+1)2 - 84 = 0 là
A. 0
B. 1
C. 2
D. 4
Giải
Đặt t = (x + 1)2 (t ≥ 0). Phương trình (1) trở thành: t2 - 5t - 84 = 0 (2)
Ta có: ∆ = (-5)2 – 4.1.(-84) = 25 + 336 = 361 > 0
Vậy phương trình (2) có 2 nghiệm phân biệt:
Vậy phương trình có 2 nghiệm
Đáp án đúng là C
Câu 4: Số nghiệm của phương trình: 2x4 - 9x2 + 7 = 0 (1) là
A. 0
B. 1
C. 2
D. 4
Giải
Đặt t = x2 (t ≥ 0). Phương trình (1) trở thành: 2t2 - 9t + 7 = 0 (2)
Phương trình (2) có a + b + c = 0 nên phương trình có 2 nghiệm
Vậy phương trình có 4 nghiệm
Đáp án đúng là D
Câu 5: Tích các nghiệm của phương trình: (2x + 1)4 – 8(2x + 1)2 - 9 = 0 là
A. 2
B. 4
C. -2
D. -4
Giải
Đặt t = (2x + 1)2 (t ≥ 0). Phương trình (1) trở thành: t2 - 8t - 9 = 0 (2)
Phương trình (2) có a – b + c = 0 nên phương trình có 2 nghiệm
Vậy tích các nghiệm của phương trình là -2.
Đáp án đúng là C
Câu 6: Số nghiệm dương của phương trình 2x4 - 3x2 - 2 = 0 (1) là
A. 0
B. 1
C. 2
D. 3
Giải
Đặt t = x2 (t ≥ 0). Phương trình (1) trở thành: 2t2 - 3t - 2 = 0 (2)
Ta có: ∆ = (-3)2 – 4.2.(-2) = 9 + 16 = 25 > 0
Vậy phương trình (2) có 2 nghiệm phân biệt:
Vậy phương trình có 1 nghiệm dương
Đáp án đúng là B
Câu 7: Số nghiệm âm của phương trình: 3x4 + 10x2 + 3 = 0 là
A. 0
B. 1
C. 2
D. 4
Giải
Đặt t = x2 (t ≥ 0). Phương trình (1) trở thành: 3t2 + 10t + 3 = 0 (2)
Ta có: ∆ = (10)2 – 4.3.3 = 100 - 36 = 64 > 0
Vậy phương trình (2) có 2 nghiệm phân biệt:
Vậy phương trình (1) có vô nghiệm, do đó (1) không có nghiệm âm nào
Đáp án đúng là A
Câu 8: Số nghiệm của phương trình: là
A. 3
B. 1
C. 2
D. 4
Giải
Ta có:
Vậy phương trình có 3 nghiệm
Đáp án đúng là A
Câu 9: Số nghiệm của phương trình: 3x4 - 2x2 - 5 = 0 (1) là
A. 0
B. 1
C. 2
D. 4
Giải
Đặt t = x2 (t ≥ 0). Phương trình (1) trở thành: 3t2 - 2t - 5 = 0 (2)
Phương trình (2) có a – b + c = 0 nên phương trình có 2 nghiệm
Vậy phương trình có 2 nghiệm
Đáp án đúng là C
Câu 10: Số nghiệm lớn hơn 1 của phương trình: x4 + 3x2 - 6 = 0 (1) là
A. 0
B. 1
C. 2
D. 3
Giải
Đặt t = x2 (t ≥ 0). Phương trình (1) trở thành: t2 + 3t - 6 = 0 (2)
Ta có: ∆ = 32 – 4.1.(-6) = 9 + 24 = 33 > 0
Vậy phương trình (2) có 2 nghiệm phân biệt:
Vậy phương trình có một nghiệm lớn hơn 1
Đáp án đúng là B
Bài viết liên quan
- Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào tham số | Tìm hệ thức liên hệ giữa x1 x2 độc lập với m
- Cách giải hệ phương trình đối xứng hai ẩn cực hay
- Phương pháp giải phương trình chứa ẩn ở mẫu hay, chi tiết
- Phương pháp giải phương trình đưa về dạng tích cực hay
- Cách giải phương trình bằng phương pháp đặt ẩn phụ cực hay