Cách giải phương trình chứa dấu căn cực hay, có đáp án

Với Cách So sánh căn bậc hai số học cực hay, có đáp án Toán học lớp 9 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách Cách giải phương trình chứa dấu căn cực hay, có đáp án.

1154
  Tải tài liệu

Cách giải phương trình chứa dấu căn cực hay, có đáp án

Lý thuyết và Phương pháp giải

    Phương trình chứa ẩn dưới dấu căn có nhiều cách giải, sau đây là một số phương pháp thường dùng:

        + Nâng lên lũy thừa

        + Đặt ẩn phụ

        + Đưa về phương trình chứa dấu giá trị tuyệt đối

        + Sử dụng bất đẳng thức, đánh giá hai vế của phương trình

Hỏi đáp VietJack

Ví dụ minh họa

Ví dụ 1: Giải các phương trình sau:

    a) (√x - 2)(5 - √x) = 4 - x

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Hướng dẫn:

    a) Dạng 1: Đưa phương trình đã cho về phương trình tích

    ĐK: x ≥ 0

    (√x - 2)(5 - √x) = 4 - x

    ⇔ (√x - 2)(5 - √x) = (2 - √x)(2 + √x)

    ⇔ (√x - 2)(5 - √x + 2 + √x) = 0

    ⇔ 7(√x - 2) = 0

    ⇔ √x - 2 = 0 ⇔ x = 4

    Vậy phương trình có nghiệm duy nhất x = 4

    b) Dạng 2: Đánh giá điều kiện của phương trình.

    ĐK: Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Thay x = 5 vào phương trình thấy không thỏa mãn

    Vậy phương trình vô nghiệm

    c) Dạng 3: Đưa về phương trình chứa dấu giá trị tuyệt đối

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    ⇔ |x - 4| = x + 2

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vậy phương trình có nghiệm x = 1

    d) Dạng 4: Đánh giá 2 vế của phương trình.

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vế trái của phương trình Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vế phải của phương trình 6 - (x + 1)2 ≤ 6

    Đẳng thức chỉ xảy ra khi x = -1

    Vậy phương trình có nghiệm duy nhất x = -1

Ví dụ 2: Giải các phương trình sau:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Chú ý: Các phương trình trên đều quy về phương trình dạng:

    A + B + C = 0 (*)

    Trong đó: A, B, C ≥ 0 nên phương trình (*) ⇔ A = B = C = 0.

Hướng dẫn:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    ĐK: x ≥ 0; y ≥ 1; z ≥ 2

    Phương trình tương đương với:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vậy phương trình có nghiệm x = -3.

Ví dụ 3: Giải phương trình sau:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Hướng dẫn:

    ĐK: x ≠ 0; x ≠ 1; x ≥ (-1)/3

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Do Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án ∀x thỏa mãn ĐK nên

    2x - 1 = 0 ⇔ x = 1/2 (TMĐK)

    Vậy phương trình có nghiệm x = 1/2

Ví dụ 4: Giải phương trình sau:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Phương pháp giải: Phương trình có dạng: Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Dùng phương pháp đặt ẩn phụ, đưa về: m + n = c + mn.

Hướng dẫn:

    Đặt

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Phương trình có dạng: a + b = 1 + ab

    ⇔ a - 1 + b - ab = 0

    ⇔ a - 1 + b(1 - a) = 0

    ⇔ (a - 1)(1 - b) = 0

Bài viết liên quan

1154
  Tải tài liệu