Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án
Với Cách giải phương trình bậc hai chứa tham số cực hay, có đáp ánToán học lớp 9 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án
Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án
A. Phương pháp giải
Dạng 3.1: Giải và biện luận phương trình theo tham số m
Bước 1: Xác định các hệ số a; b; c (hoặc a; b'; c).
Bước 2: Giải phương trình theo m:
+) Với giá trị của m mà a = 0, giải phương trình bậc nhất.
+) Với giá trị của m mà a ≠ 0, giải phương trình bậc hai: Tính Δ = b'2 - ac (hoặc Δ' = b2 - 4ac), xét các trường hợp của Δ chứa tham số và tìm nghiệm theo tham số.
Bước 3: Kết luận.
Biện luận phương trình:
- Phương trình có nghiệm khi:
+) Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.
+) Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm.
- Phương trình có một nghiệm khi:
+) Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.
+) Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm kép.
- Phương trình có hai nghiệm phân biệt khi: Giá trị của m mà a ≠ 0, phương trình bậc hai có hai nghiệm phân biệt.
Dạng 3.2: Xác định dấu các nghiệm của phương trình
Bước 1: Xác định hệ số.
Bước 2: Tính Δ = b2 - 4ac (hoặc Δ' = b2 - 4ac) để kiểm tra phương trình có nghiệm hay không.
Bước 3: Trong trường hợp phương trình có nghiệm (Δ ≥ 0 hoặc Δ' ≥ 0), tính tổng S và tích P của hai nghiệm theo định lý Vi-ét để xét dấu các nghiệm của phương trình.
+) Phương trình có hai nghiệm cùng dấu: P > 0.
+) Phương trình có hai nghiệm dương: .
+) Phương trình có hai nghiệm âm: .
+) Phương trình có hai nghiệm trái dấu: P < 0.
Chú ý: Phương trình có hai nghiệm trái dấu chỉ cần xét P < 0 hoặc a.c < 0.
Bước 4: Kết luận.
Dạng 3.3: Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước
Dạng 3.3.1: Tìm m để phương trình có nghiệm thỏa mãn điều kiện về dấu hoặc thỏa mãn đẳng thức, bất đẳng thức liên hệ giữa các nghiệm
Bước 1: Tìm điều kiện a ≠ 0 (nếu cần) và điều kiện để phương trình có nghiệm.
Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.
Bước 3: Sử dụng hệ thức Vi-ét, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.
Bước 4: Đối chiếu điều kiện và kết luận.
Dạng 3.3.2: Tìm tham số m để phương trình có một nghiệm là x0.
Bước 1: Thay giá trị x0 vào phương trình để tìm tham số.
Bước 2: Thay giá trị của tham số vào phương trình hoặc hệ thức Vi-ét để tìm nghiệm còn lại.
Bước 3: Kết luận.
Dạng 3.3.3: Tìm giá trị của tham số để hai phương trình có ít nhất một nghiệm chung.
Bước 1: Tìm điều kiện để các phương trình có nghiệm.
Bước 2: Tìm nghiệm chung và tìm tham số: Có thể giả sử x0 là nghiệm chung, lập hệ phương trình trình hai ẩn (x0 và tham số) và giải hệ phương trình.
Bước 3: So sánh với điều kiện và kết luận.
B. Các ví dụ điển hình
Ví dụ 1: Giải phương trình x2 - 2x + 1 - m2 = 0 với m là tham số, m ≠ 0.
Lời giải
Chọn A
Ví dụ 2: Cho phương trình x2 + √7x + 1 = 0. Khẳng định nào sau đây là đúng?
Lời giải
Chọn B
Ví dụ 3: Số các giá trị nguyên của tham số m để phương trình x2 - 2x + m = 0 có hai nghiệm phân biệt x1; x2 sao cho x12.x22 ≤ 4 là:.
Lời giải
Chọn B
Ví dụ 4: Phương trình bậc hai mx2 + (2m + 1)x + 3 = 0 có một nghiệm là x = -1. Giá trị của m và nghiệm còn lại là:
Lời giải
Chọn A
Ví dụ 5: Cho hai phương trình bậc hai x2 + 2x + m = 0 (1) và x2 + mx + 2 = 0 (2) (với m là tham số). Tìm m để hai phương trình có ít nhất một nghiệm chung.
Lời giải
Chọn B
Bài viết liên quan
- Cách giải phương trình bậc hai một ẩn cực hay, có đáp án
- Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án
- Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án
- Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án
- Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án