Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)
Với Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0) Toán học lớp 9 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0).
Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)
A. Phương pháp giải
+) B1: Đặt t = (x + a)(x + b) ⇒ t = x2 + (a + b)x + ab
⇒ t - ab = x2 + (a + b)x
+) B2: Biến đổi biểu thức (x + c)(x + d) theo biến t
Ta có: (x + c)(x + d) = x2 + (c + d)x + cd = x2 + (a + b)x + cd = t – ab + cd
+) B3: Biến đổi phương trình (x + a)(x + b)(x + c)(x + d) = m theo biến t
t(t – ab + cd) = m ⇔ t2 + (– ab + cd)t – m = 0(*)
Giải phương trình (*) tìm t sau đó tìm x
B. Bài tập
Câu 1: Giải phương trình (x +5)(x + 4)(x - 1)(x - 2) = 112 (1)
Giải
Phương trình (1) ⇔ (x + 5)(x - 2)(x + 4)(x - 1) = 112
Đặt t = (x - 2)(x + 5) = x2 + 3x - 10
⇒ (x + 4)(x - 1) = x2 + 3x - 4 = t + 6
Khi đó phương trình trở thành:
Với t = 8 ⇒ x2 + 3x - 10 = 8 ⇔ x2 + 3x - 18 = 0. Phương trình có ∆ = 32 + 4.1.18 = 81 > 0 nên phương trình có 2 nghiệm phân biệt: x = -6, x = 3
Với t = -14 ⇒ x2 + 3x - 10 = -14 ⇔ x2 + 3x + 4 = 0. Phương trình có ∆ = 32 - 4.1.4 = -7 < 0 nên phương trình vô nghiệm
Vậy phương trình có 2 nghiệm: x = -6, x = 3
Câu 2: Giải phương trình (x +1)(x + 3)(x + 6)(x + 4) = -8 (1)
Giải
Phương trình (1) ⇔ (x +1)(x + 6)(x + 4)(x + 3) = -8
Đặt t = (x + 1)(x + 6) = x2 + 7x + 6
⇒ (x + 4)(x + 3) = x2 + 7x + 12 = t + 6
Khi đó phương trình trở thành:
Với t = -2 ⇒ x2 + 7x + 6 = -2 ⇔ x2 + 7x + 8 = 0. Phương trình có ∆ = 72 - 4.1.8 = 17 > 0 nên phương trình có 2 nghiệm phân biệt
Với t = -4 ⇒ x2 + 7x + 6 = -4 ⇔ x2 + 7x + 10 = 0. Phương trình có ∆ = 72 - 4.1.10 = 9 > 0 nên phương trình có 2 nghiệm phân biệt x = -2, x = -5
Vậy phương trình có 4 nghiệm:
Câu 3: Giải phương trình x(x + 1)(x + 2)(x + 3) = 24 (1)
Giải
Phương trình (1) ⇔ x(x + 3)(x + 1)(x + 2) = 24
Đặt t = x(x + 3) = x2 + 3x
(x + 1)(x + 2) = x2 + 3x + 2 = t + 2
Khi đó phương trình trở thành:
Với t = -6 ⇒ x2 + 3x = -6 ⇔x2 + 3x + 6 = 0 (phương trình vô nghiệm vì ∆ < 0)
Với t = 4 ⇒ x2 + 3x = 4 ⇔x2 + 3x - 4 = 0. Phương trình có a + b + c = 0 nên có 2 nghiệm x = 1, x = -4
Vậy phương trình có 2 nghiệm: x = 1, x = -4
Câu 4: Giải phương trình (x + 4)(x + 5)(x + 7)(x + 8) = 4 (1)
Giải
Phương trình (1) ⇔ (x + 4)(x + 8)(x + 5)(x + 7) = 4
Đặt t = (x + 4)(x + 8) = x2 + 12x + 32
⇒ (x + 5)(x + 7) = x2 + 12x + 35 = t + 3
Khi đó phương trình trở thành:
Với t = 1 ⇒ x2 + 12x + 32 = 1 ⇔ x2 + 12x + 31 = 0. Phương trình có ∆ꞌ = 36 – 31 = 5 > 0 nên có 2 nghiệm phân biệt: x = -6 ± √5
Với t = -4 ⇒ x2 + 12x + 32 = -4 ⇔ x2 + 12x + 36 = 0 ⇔(x + 6)2 = 0 ⇔ x = -6
Vậy phương trình có 3 nghiệm: x = -6, x = -6 ± √5
Câu 5: Giải phương trình (x + 5)(x + 6)(x - 4)(x - 5) = -21 (1)
Giải
Phương trình (1) ⇔ (x + 5)(x - 4)(x + 6)(x - 5) = -21
Đặt t = (x -4)(x + 5) = x2 + x - 20
⇒ (x + 6)(x - 5) = x2 + x - 30 = t - 10
Khi đó phương trình trở thành:
Với t = 3 ⇒ x2 + x-20 = 3 ⇔ x2 + x - 23 = 0. Phương trình có ∆ = 12 + 4.1.23 = 93 > 0 nên phương trình có 2 nghiệm phân biệt
Với t = 7 ⇒ x2 + x-20 = 7 ⇔ x2 + x - 27 = 0. Phương trình có ∆ = 12 + 4.1.27 = 109 > 0 nên phương trình có 2 nghiệm phân biệt
Vậy phương trình có 4 nghiệm:
Bài viết liên quan
- Cách giải và biện luận phương trình chứa ẩn ở mẫu cực hay
- Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm
- Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)4 + (x + b)4 = c)
- Cách giải phương trình bậc bốn dạng ax^4 + bx^3 + cx ^2 ± kbx + k^2a = 0
- Cách giải phương trình chứa căn thức lớp 9 cực hay