Toán lớp 8 Bài 63: Các trường hợp đồng dạng của tam giác vuông
Lý thuyết tổng hợp Toán học lớp 8 Bài 63: Các trường hợp đồng dạng của tam giác vuông chọn lọc năm 2021 – 2022 mới nhất gồm tóm tắt lý thuyết và hơn 500 bài tập ôn luyện Toán 8. Hy vọng bộ tổng hợp lý thuyết Toán lớp 8 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 8.
Bài 63: Các trường hợp đồng dạng của tam giác vuông
A. Lý thuyết
1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông
Hai tam giác vuông đồng dạng với nhau nếu:
+ Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia.
+ Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia.
2. Dấu hiệu đặc biệt nhận biết hai tam vuông đồng dạng
Định lý 1: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Tổng quát: Δ ABC,Δ A'B'C', Aˆ = A'ˆ = 900; B'C'/BC = A'B'/AB
\Rightarrow Δ ABC ∈ Δ A'B'C'.
3. Tỉ số hai đường cao, tỉ số diện tích của hai tam giác đồng dạng
Định lý 2: Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng.
Tổng quát: Ta có tỉ số đồng dạng là
Tỉ số hai đường cao là :
Định lý 3: Tỉ số diện tích hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.
Tổng quát: Ta có tỉ số đồng dạng là
Tỉ số diện tích hai tam giác đồng dạng là :
4. Mở rộng
Nếu hai tam giác đồng dạng với nhau thì:
+ Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng.
+ Tỉ số hai đường phân giác tương ứng bằng tỉ số đồng dạng.
+ Tỉ số hai đường trung tuyến tương ứng bằng tỉ số đồng dạng.
+ Tỉ số các chu vi bằng tỉ số đồng dạng.
+ Tỉ số các diện tích bằng bình phương tỉ số đồng dạng.
5. Ví dụ áp dụng
Ví dụ: Cho tam giác đồng dạng với tam giác ABC theo tỉ số k = 4/3. Tính chu vi của tam giác ABC, biết chu vi của tam giác A'B'C' bằng 27cm.
Hướng dẫn:
Ta có Δ A'B'C' ∈ Δ ABC theo tỉ số k
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
6. Bài tập tự luyện
Bài 1: Cho hình bên là tam giác ABC vuông tại A, đường cao AH
a) Trong hình bên có bao nhiêu cặp tam giác đồng dạng với nhau. Hãy chỉ ra các cặp đồng dạng và theo các đỉnh tương ứng.
b) Cho biết AB = 5cm, AC = 12cm. Tinh độ dài các đoạn thẳng BC, AH, BH và CH.
Hướng dẫn:
a) Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.
b) Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A ta có:
BC2 = CA2 + AB2 ⇒ BC2 = 122 + 52 = 132 ⇔ BC = 13( cm )
Vì SABC = 1/2AB.AC = 1/2AH.BC ⇒ AH.BC = AB.AC
Hay 12.5 = AH.13 ⇒ AH = 60/13 ( cm )
Từ câu a ta có: Δ BHA ∼ Δ BAC ⇒ BH/BA = BA/BC hay BH/5 = 5/13 ⇔ BH = 25/13( cm )
Do đó: CH = BC - BH = 13 - 25/13 = 144/13( cm )
Bài 2: Chân đường cao AH chia cạnh huyền BC thành hai đoạn thẳng có độ dài lần lượt là 25 cm và 36 cm. Tính chu vi và diện tích của tam giác đó.
Hướng dẫn:
Ta có: Δ AHB ∼ Δ CHA ⇒ AH/HC = HB/HA
Hay HA/36 = 25/HA ⇔ HA2 = 302 ⇒ HA = 30( cm )
Ta có: SABC = 1/2AH.BC = 1/2.30.61 = 915( cm2 )
Áp dụng định lý Py – ta –go ta được:
B. Bài tập trắc nghiệm
Bài 1: Cho tam giác vuông ABC vuông tại A, chân đường cao AH của tam giác ABC chia cạnh huyền BC thành hai đoạn thẳng BH = 4cm, HC = 9cm. Tính diện tích tam giác ABC?
A. SABC = 39cm2 B. SABC = 36cm2
C. SABC = 78cm2 D. SABC = 18cm2
Đáp ánÁp dụng hệ thức lượng trong tam giác ABC vuông tại A
Ta có:
Vậy SABC = 1/2AB.AC = 1/2.2√(13) .3√(13) = 39( cm2 )
Chọn đáp án A.
Bài 2: Cho Δ ABC và Δ MNP có Aˆ = Mˆ = 900, AB/MN = BC/NP thì?
A. Δ ABC ∼ Δ PMN
B. Δ ABC ∼ Δ NMP
C. Δ ABC ∼ Δ MNP
D. Δ ABC ∼ Δ MPN
Đáp ánTa có:
⇒ Δ ABC ∼ Δ MNP ( c - g - c )
Chọn đáp án C.
Bài 3: Nếu hai tam giác đồng dạng với nhau thì: Chọn phát biểu sai trong các phát biểu sau?
A. Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng.
B. Tỉ số hai đường phân giác tương ứng bằng tỉ số đồng dạng.
C. Tỉ số hai đường trung tuyến tương ứng bằng tỉ số đồng dạng.
D. Tỉ số các chu vi bằng 2 lần tỉ số đồng dạng.
Đáp ánÁp dụng tính chất mở rộng
Nếu hai tam giác đồng dạng với nhau thì:
+ Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng.
+ Tỉ số hai đường phân giác tương ứng bằng tỉ số đồng dạng.
+ Tỉ số hai đường trung tuyến tương ứng bằng tỉ số đồng dạng.
+ Tỉ số các chu vi bằng tỉ số đồng dạng.
Đáp án D sai.
Chọn đáp án D.
Bài 4: Cho hai tam giác ABC và DEF có Aˆ = Dˆ = 900 ,AB = 3cm, BC = 5cm,EF = 10cm, DF = 6cm. Chọn phát biểu đúng trong các phát biểu sau?
A. Δ ABC ∼ Δ DEF B. Δ ABC ∼ Δ EDF
C. Δ ABC ∼ Δ DFE D. Δ ABC ∼ Δ FDE
Đáp ánTa có:
⇒ Δ ABC ∼ Δ DFE ( c - g - c )
Chọn đáp án C.
Bài 5: Cho tam giác ABC có AB = 3cm; AC = 4cm và BC = 5cm. Tam giác MNP vuông tại M có MN = 6cm; MP = 8cm. Tìm khẳng định sai
A. Tam giác ABC là tam giác vuông
B. Δ ABC và ΔMNP đồng dạng với nhau
C. NP = 10 cm
D. Có hai phương án sai
Đáp ánTa có: AB2 + AC2 = BC2 ( 32 + 42 = 52 = 25)
Suy ra: tam giác ABC vuông tại A
Xét Δ ABC và Δ MNP có:
Suy ra: Δ ABC và ΔMNP đồng dạng với nhau.
Áp dụng định lí Pyta go vào tam giác MNP có:
NP2 = MN2 + MP2 = 62 + 82 = 100 nên NP = 10cm
Chọn đáp án D
Bài 6: Cho tam giác ABC vuông tại A, kẻ AH vuông góc BC. Tìm tam giác đồng dạng với tam giác ABC?
A. ΔHAC B. ΔAHC
C. ΔAHB D. ΔABH
Đáp ánXét ΔABC và ΔHAC có:
Suy ra: ΔABC đồng dạng với ΔHAC ( g.g)
Chọn đáp án A
Bài 7: Cho ta giác ABC vuông tại A, kẻ AH vuông góc BC. Biết BH = 25 và HC = 36. Tính AH?
A. 18cm B. 25cm
C. 20cm D. 32cm
Đáp ánXét ΔAHB và ΔCHA có:
Suy ra: ΔAHB và ΔCHA đồng dạng với nhau ( g.g)
Chọn đáp án C
Bài 8: Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC. Biết BC = 20cm, AC = 12cm. Tính BH?
A. 12cm B. 12,5cm
C. 15cm D. 12,8cm
Đáp ánÁp dụng định lí Pytago vào tam giác ABC ta có:
BC2 = AB2 + AC2 suy ra: AB2 = BC2 - AC2 = 202 - 122 = 256
Nên AB = 16cm
* Xét tam giác AHB và tam giác CAB có:
Suy ra: Δ AHB và CAB đồng dạng ( g.g) .
Chọn đáp án D
Bài 9: Cho tam giác ABC vuông tại A, kẻ đường cao AH. Biết AH = 6cm, BH = 3cm. Tính AC?
Đáp ánChọn đáp án C
Bài 10: Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm . Tam giác MNP đồng dạng với tam giác ABC và diện tích tam giác MNP là 96cm2. Tính độ dài các cạnh của tam giác MNP?
A. 9cm, 12cm, 15cm
B. 12cm, 16cm ; 20cm
C. 6cm, 8cm, 10cm
D. Đáp án khác
Đáp ánTa có: AB2 + AC2 = BC2 (32 + 42 = 52)
Suy ra: tam giác ABC vuông tại A.
Diện tích tam giác ABC là:
*Gọi tam giác ABC đồng dạng với tam giác MNP theo tỉ số k
Suy ra:
Thay số
Chọn đáp án B