Toán lớp 8 Bài 54: Phương trình chứa dấu giá trị tuyệt đối
Lý thuyết tổng hợp Toán học lớp 8 Bài 54: Phương trình chứa dấu giá trị tuyệt đối chọn lọc năm 2021 – 2022 mới nhất gồm tóm tắt lý thuyết và hơn 500 bài tập ôn luyện Toán 8. Hy vọng bộ tổng hợp lý thuyết Toán lớp 8 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 8.
Bài 54: Phương trình chứa dấu giá trị tuyệt đối
A. Lý thuyết
1. Nhắc lại về giá trị tuyệt đối
Giá trị tuyệt đối của số a, được kí hiệu là | a |, ta định nghĩa như sau:
Ví dụ: Bỏ dấu giá trị tuyệt đối và rút gọn biểu thức sau:
a) A = | x - 1 | + 3 - x khi x ≥ 1.
b) B = 3x - 1 + | - 2x | khi x < 0.
Hướng dẫn:
a) Khi x ≥ 1 ta có x - 1 ≥ 0 nên | x - 1 | = x - 1
Do đó A = | x - 1 | + 3 - x = x - 1 + 3 - x = 2.
b) Khi x < 0 ta có - 2x > 0 nên | - 2x | = - 2x
Do đó B = 3x - 1 + | - 2x | = 3x - 1 - 2x = x - 1.
2. Giải một số phương trình chứa dấu giá trị tuyệt đối
a) Phương pháp chung
Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối
Bước 2: Rút gọn hai vế của phương trình, giải phương trình
Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét
Bước 4: Kết luận nghiệm
b) Một số dạng cơ bản
Dạng
hoặc
Dạng | A | = | B | ⇔ A = B hay A = - B.
Dạng phương trình có chứa nhiều dấu giá trị tuyệt đối
+ Xét dấu các biểu thức chứa ẩn nằm trong dấu GTTĐ.
+ Chia trục số thành nhiều khoảng sao cho trong mỗi khoảng, các biểu thức nói trên có dấu xác định.
+ Xét từng khoảng, khử các dấu GTTĐ, rồi giải PT tương ứng trong trường hợp đó.
+ Kết hợp các trường hợp đã xét, suy ra số nghiệm của PT đã cho.
Ví dụ: Giải bất phương trình | 4x | = 3x + 1
Hướng dẫn:
Ta có | 4x | = 3x + 1
+ Với x ≥ 0 ta có | 4x | = 4x
Khi đó phương trình trở thành 4x = 3x + 1
⇔ 4x - 3x = 1 ⇔ x = 1.
Giá trị x = 1 thỏa mãn điều kiện x ≥ 0, nên 1 là một nghiệm của phương trình đã cho
+ Với x < 0 ta có | 4x | = - 4x
Khi đó phương trình trở thành - 4x = 3x + 1
⇔ - 4x - 3x = 1 ⇔ - 7x = 1 ⇔ x = - 1/7.
Giá trị x = - 1/7 thỏa mãn điều kiện x < 0, nên - 1/7 là một nghiệm cần tìm.
Vậy phương trình đã cho có tập nghiệm là S = { - 1/7;1 }
3. Bài tập tự luyện
Bài 1: Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức sau:
a) A = 3x + 2 + | 5x | với x > 0.
b) A = | 4x | - 2x + 12 với x < 0.
c) A = | x - 4 | - x + 1 với x < 4
Hướng dẫn:
a) Với x > 0 ⇒ | 5x | = 5x
Khi đó ta có: A = 3x + 2 + | 5x | = 3x + 2 + 5x = 8x + 2
Vậy A = 8x + 2.
b) Ta có: x < 0 ⇒ | 4x | = - 4x
Khi đó ta có: A = | 4x | - 2x + 12 = - 4x - 2x + 12 = 12 - 6x
Vậy A = 12 - 6x.
c) Ta có: x < 4 ⇒ | x - 4 | = 4 - x
Khi đó ta có: A = | x - 4 | - x + 1 = 4 - x - x + 1 = 5 - 2x.
Vậy A = 5 - 2x
Bài 2: Giải các phương trình sau:
a) | 2x | = x - 6
b) | - 5x | - 16 = 3x
c) | 4x | = 2x + 12
d) | x + 3 | = 3x - 1
Hướng dẫn:
a) Ta có: | 2x | = x - 6
+ Với x ≥ 0, phương trình tương đương: 2x = x - 6 ⇔ x = - 6.
Không thỏa mãn điều kiện x ≥ 0.
+ Với x < 0, phương trình tương đương: - 2x = x - 6 ⇔ - 3x = - 6 ⇔ x = 2.
Không thỏa mãn điều kiện x < 0.
Vậy phương trình đã cho vô nghiệm.
b) Ta có: | - 5x | - 16 = 3x
+ Với x ≥ 0, phương trình tương đương: 5x - 16 = 3x ⇔ 2x = 16 ⇔ x = 8
Thỏa mãn điều kiện x ≥ 0
+ Với x < 0, phương trình tương đương: - 5x - 16 = 3x ⇔ 8x = - 16 ⇔ x = - 2
Thỏa mãn điều kiện x < 0
Vậy phương trình đã cho có tập nghiệm là S = { - 2;8 }
c) Ta có: | 4x | = 2x + 12
+ Với x ≥ 0, phương trình tương đương: 4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6
Thỏa mãn điều kiện x ≥ 0
+ Với x < 0, phương trình tương đương: - 4x = 2x + 12 ⇔ - 6x = 12 ⇔ x = - 2
Thỏa mãn điều kiện x < 0
Vậy phương trình đã cho có tập nghiệm là S = { - 2;6 }
d) Ta có: | x + 3 | = 3x - 1
+ Với x ≥ - 3, phương trình tương đương: x + 3 = 3x + 1 ⇔ - 2x = - 2 ⇔ x = 1.
Thỏa mãn điều kiện x ≥ - 3
+ Với x < - 3, phương trình tương đương: - x - 3 = 3x + 1 ⇔ - 4x = 4 ⇔ x = - 1
Không thỏa mãn điều kiện x < - 3
Vậy phương trình đã cho có tập nghiệm là S = { 1 }
B. Bài tập trắc nghiệm
Bài 1: Biểu thức A = | 4x | + 2x - 1 với x < 0, rút gọn được kết quả là?
A. A = 6x - 1
B. A = 1 - 2x
C. A = - 1 - 2x
D. A = 1 - 6x
Đáp ánTa có: x < 0 ⇒ | 4x | = - 4x
Khi đó ta có: A = | 4x | + 2x - 1 = - 4x + 2x - 1 = - 2x - 1
Chọn đáp án C.
Bài 2: Tập nghiệm của phương trình: | 3x + 1 | = 5
A. S = { - 2 }
B. S = { 4/3 }
C. S = { - 2;4/3 }
D. S = { Ø }
Đáp ánTa có: | 3x + 1 | = 5 ⇔
Vậy tập nghiệm của phương trình đã cho là S = { - 2;4/3 }
Chọn đáp án C.
Bài 3: Tập nghiệm của phương trình |2 - 3x| = |5 - 2x| là?
B. S = { - 3;7/5 }
C. S = { 0;7/5 }
D. S = { - 3;1 }
Đáp ánTa có: |2 - 3x| = |5 - 2x| ⇔
Vậy tập nghiệm của phương trình là S = { - 3;7/5 }
Chọn đáp án B.
Bài 4: Giá trị m để phương trình | 3 + x | = m có nghiệm x = - 1 là?
A. m = 2 B. m = - 2
C. m = 1 D. m = - 1
Đáp ánPhương trình đã cho có nghiệm x = - 1 nên ta có: | 3 + ( - 1 ) | = m ⇔ m = 2.
Vậy m = 2 là giá trị cần tìm.
Chọn đáp án A.
Bài 5: Giá trị của m để phương trình | x - m | = 2 có nghiệm là x = 1 ?
A. m ∈ { 1 }
B. m ∈ { - 1;3 }
C. m ∈ { - 1;0 }
D. m ∈ { 1;2 }
Đáp ánPhương trình có nghiệm x = 1, khi đó ta có:
| 1 - m | = 2 ⇔
Vậy giá trị m cần tìm là m ∈ { - 1;3 }
Chọn đáp án B.
Bài 6: Rút gọn biểu thức A = |2x + 4| + 2(x - 3) với x > 0
A. 4x - 2 B. 3 – 4x C. -10 D. 4x -10
Đáp ánChọn đáp án A
Bài 7: Với x > 2 thì |3 - (2x - 1)| bằng ?
A. 2x + 4 B. 2x - 4 C. 2x - 1 D. 2x – 2
Đáp ánChọn đáp án B
Bài 8: Tìm tất cả các giá trị của x thỏa mãn: |6 - 2(x + 2)| = 2 - 2x
A. x = 1 B. x < 1 C. x ≤ 1 D. x > 1
Đáp ánChọn đáp án C
Bài 9: Giải phương trình sau: |x + 1| = 2x + 7
A. x = 8 hoặc x = -2 B. x = 2 C. x = 2 hoặc x = 8 D. x = 8
Đáp ánChọn đáp án D
Bài 10: Giải phương trình |2 - (x + 4)| = |2x - 3(x + 2)|
A. x = 3 hoặc x = -4 B. x = 1 hoặc x = -2 C. x = -4 D. x = 4 và x = 2
Đáp ánChọn đáp án C