Toán lớp 8 Bài 51: Liên hệ giữa thứ tự và phép nhân
Lý thuyết tổng hợp Toán học lớp 8 Bài 51: Liên hệ giữa thứ tự và phép nhân chọn lọc năm 2021 – 2022 mới nhất gồm tóm tắt lý thuyết và hơn 500 bài tập ôn luyện Toán 8. Hy vọng bộ tổng hợp lý thuyết Toán lớp 8 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 8.
Bài 51: Liên hệ giữa thứ tự và phép nhân
A. Lý thuyết
1. Liện hệ giữa thứ tự và phép nhân với số dương
a) Tính chất
Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho
b) Tổng quát
Với ba số a, b và c mà c > 0, ta có:
Nếu a < b thì ac < bc
Nếu a ≤ b thì ac ≤ bc
Nếu a > b thì ac > bc
Nếu a ≥ b thì ac ≥ bc.
Ví dụ:
+ Ta có 3 < 5 ⇒ 3.3 < 5.3 (đúng) vì VT = 3.3 = 9 < VP = 5.3 = 15.
+ Ta có - 2 > - 3 ⇒ ( - 2 ).2 > ( - 3 ).2 (đúng) vì VT = ( - 2 ).2 = - 4 > VP = ( - 3 ).2 = - 6.
2. Liên hệ giữa thứ tự với phép nhân với số âm
a) Tính chất
Khi nhân cả hai vế của một bất đẳng thức với cùng một số âm ta được một bất đẳng thức mới ngược chiều với bất đẳng thức đã cho
b) Tổng quát
Với ba số a, b và c mà c < 0, ta có:
Nếu a < b thì ac > bc
Nếu a ≤ b thì ac ≥ bc
Nếu a > b thì ac < bc
Nếu a ≥ b thì ac ≤ bc.
Ví dụ:
+ Ta có - 7 < 2 ⇔ ( - 7 ).( - 2 ) > 2.( - 2 ) (đúng) vì VT = ( - 7 ).( - 2 ) = 14 > VP = 2.( - 2 ) = - 4.
+ Ta có 6 > 2 ⇒ 6.( - 1 ) < 2.( - 1 ) (đúng) vì VT = 6.( - 1 ) = - 6 < VP = 2.( - 1 ) = - 2.
3. Tính chất bắc cầu theo thứ tự
Với ba số a,b và c ta thấy rằng nếu a < b và b < c thì a < c. Tính chất này gọi là tính chất bắc cầu.
Ví dụ: Cho a > b. Chứng minh a + 2 > b - 1.
Cộng 2 vào hai vế của bất đẳng thức a > b, ta được:
a + 2 > b + 2 ( 1 )
Cộng b vào hai vế của bất đẳng thức 2 > - 1, ta được:
b + 2 > b - 1 ( 2 )
Từ ( 1 ) và ( 2 ), áp dụng tính chất bắc cầu trên ta có: a + 2 > b - 1.
4. Bài tập tự luyện
Bài 1: Khẳng định sau đúng hay sai?
a) ( - 3 ).4 > ( - 3 ).3
b) ( - 4 )( - 5 ) ≤ ( - 6 )( - 5 )
Hướng dẫn:
a) Ta có: 4 > 3 ⇒ ( - 3 ).4 < ( - 3 ).3
Khẳng định trên là sai.
b) Ta có: - 4 ≥ - 6 ⇒ ( - 4 )( - 5 ) ≤ ( - 6 )( - 5 )
Khẳng định trên là đúng
Bài 2: Cho 3a ≤ 2b ( b ≥ 0 ). Hãy so sánh 2 số 5a và 4b
Hướng dẫn:
Ta có: 3a ≤ 2b ⇒ 5/3.3a ≤ 5/3.2b ⇒ 5a ≤ 10/3b
Mà 10/3 < 4 ⇒ 10/3b ≤ 4b ⇒ 5a ≤ 4b
B. Bài tập trắc nghiệm
Bài 1: Trong các khẳng định sau đây, khẳng định nào sai?
( 1 ) ( - 4 ).5 ≤ ( - 5 ).4
( 2 ( - 7 ).12 ≥ ( - 7 ).11
( 3 ) - 4x2 > 0
A. ( 1 ),( 2 ) và ( 3 ) B. ( 1 ),( 2 )
C. ( 1 ) D. ( 2 ),( 3 )
Đáp án+ Ta có: ( - 4 ).5 = 4.( - 5 ) → Khẳng định ( 1 ) sai.
+ Ta có: 12 > 11 ⇒ 12.( - 7 ) < 11.( - 7 ) → Khẳng định ( 2 ) sai.
+ Ta có: x2 ≥ 0 ⇒ - 4x2 ≤ 0 → Khẳng định ( 3 ) sai
Chọn đáp án A.
Bài 2: Cho a + 1 ≤ b + 2. So sánh hai số 2a + 2 và 2b + 4 nào dưới đây đúng ?
A. 2a + 2 > 2b + 4
B. 2a + 2 < 2b + 4
C. 2a + 2 ≤ 2b + 4
D. 2a + 2 ≥ 2b + 4
Đáp ánVới ba số a, b và c mà c > 0, ta có: Nếu a ≤ b thì ac ≤ bc
Khi đó, ta có: a + 1 ≤ b + 2 ⇒ 2( a + 1 ) ≤ 2( b + 2 ) ⇔ 2a + 2 ≤ 2b + 4.
Chọn đáp án C.
Bài 3: Cho a > b. Khẳng định nào sau đây đúng?
A. - 3a - 1 > - 3b - 1
B. - 3( a - 1 ) < - 3( b - 1 )
C. - 3( a - 1 ) > - 3( b - 1 )
D. 3( a - 1 ) < 3( b - 1 )
Đáp án+ Ta có: a > b ⇒ - 3a < - 3b ⇔ - 3a - 1 < - 3b - 1
→ Đáp án A sai.
+ Ta có: a > b ⇒ a - 1 > b - 1 ⇔ - 3( a - 1 ) < - 3( b - 1 )
→ Đáp án B đúng.
+ Ta có: a > b ⇒ a - 1 > b - 1 ⇔ - 3( a - 1 ) < - 3( b - 1 )
→ Đáp án C sai.
+ Ta có: a > b ⇒ a - 1 > b - 1 ⇔ 3( a - 1 ) > 3( b - 1 )
→ Đáp án D sai.
Chọn đáp án B.
Bài 4: Cho a ≥ b. Khẳng định nào sau đây đúng?
A. 2a - 5 ≤ 2( b - 1 )
B. 2a - 5 ≥ 2( b - 1 )
C. 2a - 5 ≥ 2( b - 3 )
D. 2a - 5 ≤ 2( b - 3 )
Đáp án+ Ta có: a ≥ b ⇒ 2a ≥ 2b
Mặt khác, ta có: - 5 ≥ - 6
Khi đó 2a - 5 ≥ 2b - 6 hay 2a - 5 ≥ 2( b - 3 ).
Chọn đáp án C.
Bài 5: Cho x > 0. Khẳng định nào sau đây đúng?
A. ( x + 1 )2 ≤ 0
B. ( x + 1 )2 > 1
C. ( x + 1 )2 ≤ 1
D. ( x + 1 )2 < 1
Đáp ánTa có: x > 0 ⇒ x + 1 > 1 ⇒ ( x + 1 )2 > 12.
Hay ( x + 1 )2 > 1.
Chọn đáp án B.
Bài 6: Cho tam giác ABC, khẳng định nào sau đây đúng?
Đáp án
Chọn đáp án A
Bài 7: Cho a > b. So sánh: 2a + 10 và 2b + 9
A. 2a + 10 < 2b + 9
B. 2a +10 = 2b + 9
C. 2a + 10 > 2b + 9
D. Chưa thể kết luận
Đáp án* Ta có: a > b nên 2a > 2b
Suy ra: 2a + 9 >> 2b + 9 (1)
* Lại có: 10 > 9 nên 2a + 10 > 2a + 9 (2)
Từ (1) và (2) suy ra: 2a+ 10 > 2b + 9
Chọn đáp án C
Bài 8: Cho -2a - 8 < - 2b - 8. So sánh a và b
A. a > b B. a < b
C. a > b+1 D. a < b + 1
Đáp ánTa có: - 2a - 8 < - 2b – 8 nên: -2a - 8 + 8 < - 2b – 8 + 8 hay -2a < - 2b
Nhân cả 2 vế bất đẳng thức với -1/2 < 0 ta được: a > b
Chọn đáp án A
Bài 9: Cho a < b . Khi đó:
A. 2a – 3 < 2b + 4
B. – 2a – 3 < - 2b + 4
C. 2a + 3 < 2b – 4
D. – 2a + 1 < - 2b +2
Đáp ánTa có: a < b, nhân cả 2 vế bất đẳng thức với 2 > 0 ta được: 2a < 2b
Suy ra: 2a – 3 < 2b – 3 (1)
Lại có: -3 < 4 nên 2b – 3 < 2b + 4 (2)
Từ (1) và (2) suy ra: 2a – 3 < 2b + 4
Chọn đáp án A
Bài 10: Cho 4a < 7a . Khẳng định nào sau đây là đúng?
A. a < 0 B. 2a +1 < 1
C. a > 0 D. -3a > 0
Đáp ánTa có: 4a < 7a nên 4a + (-4a) < 7a + (- 4a) hay 0 < 3a (1)
Nhân cả 2 vế của bất đẳng thức (1) với 1/3 > 0 ta được:
Vậy a > 0
Chọn đáp án C