Toán lớp 8 Bài 34: Hình thoi
Lý thuyết tổng hợp Toán học lớp 8 Bài 34: Hình thoi chọn lọc năm 2021 – 2022 mới nhất gồm tóm tắt lý thuyết và hơn 500 bài tập ôn luyện Toán 8. Hy vọng bộ tổng hợp lý thuyết Toán lớp 8 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 8.
Bài 34: Hình thoi
A. Lý thuyết
1. Định nghĩa
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Hình thoi cũng là một hình bình hành.
Tổng quát: ABCD là hình thoi \Leftrightarrow AB = BC = CD = DA
2. Tính chất
Hình thoi có tất cả các tính chất của hình bình hành.
Định lí: Trong hình thoi:
+ Hai đường chéo vuông góc với nhau.
+ Hai đường chéo là các đường phân giác các góc của hình thoi.
3. Dấu hiệu nhận biết hình thoi
+ Tứ giác có bốn cạnh bằng nhau là hình thoi.
+ Hình bình hành có hai cạnh kề bằng nhau là hình thoi
+ Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
+ Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
Ví dụ: Cho hình chữ nhật ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD. Chứng minh tứ giác MNPQ là hình thoi.
Hướng dẫn:
M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD
⇒ AM = MB; BN = NC; CP = DP; AQ = DQ
+ Xét Δ ABD có
⇒ MQ là đường trung bình của Δ ABD.
⇒ QM = 1/2BD = 1/2AC ( 1 )
+ Xét Δ ABC có
⇒ MN là đường trung bình của Δ ABC.
⇒ MN = 1/2BD = 1/2AC ( 2 )
+ Xét Δ BCD có
⇒ NP là đường trung bình của Δ BCD.
⇒ NP = 1/2BD = 1/2AC ( 3 )
+ Xét Δ ADC có
⇒ QP là đường trung bình của Δ ADC.
⇒ QP = 1/2BD = 1/2AC ( 4 )
Từ ( 1 ),( 2 ),( 3 ),( 4 ) ⇒ MN = NP = PQ = QM.
⇒ MNPQ là hình thoi.
4. Bài tập tự luyện
Bài 1: Cho hình thoi ABCD có góc A tù. Biết đường cao kẻ từ đỉnh A đến cạnh CD chia đội cạnh đó. Tính các góc của hình thoi.
Hướng dẫn:
Gọi H là chân đường cao kẻ từ đỉnh A xuống cạnh CD, theo giả thiết ta có:
⇒ AH là đường trung trực của đoạn CD nên AC = AD ( 1 )
Áp dụng định nghĩa của hình thoi ABCD, ta có
AD = AB = BC = CD ( 2 )
Từ ( 1 ) và ( 2 ) ta có AD = AC = CD ⇒ Δ ACD là tam giác đều
⇒ ADCˆ = 600.
Vì góc A và góc D là hai góc trong cùng phía của AB//CD nên chúng bù nha.
Hay Aˆ + Dˆ = 1800 ⇒ Aˆ = 1800 - Dˆ = 1800 - 600 = 1200.
Áp dụng tính chất về góc của hình thoi ta có:
Bài 2: Chứng minh rằng các đường cao của hình thoi bằng nhau.
Hướng dẫn:
Xét hình thoi ABCD, kẻ hai đường cao
AH ⊥ BC, AK ⊥ CD.
Ta cần chứng minh: AH = AK.
Áp dụng định nghĩa, tính chất về góc và giả thiết của hình thoi ABCD, ta có:
⇒ Δ ABH = Δ ADH ( g - c - g )
⇒ AH = AK (cặp cạnh tương ứng bằng nhau)
→ (đpcm)
B. Bài tập trắc nghiệm
Bài 1: Khoanh tròn vào phương án đúng trong các phương án sau ?
A. Hình thoi là tứ giác có bốn góc bằng nhau.
B. Hình thoi là tứ giác có hai cạnh đối bằng nhau.
C. Hình thoi là tứ giác có ba góc vuông.
D. Hình thoi là tứ giác có bốn cạnh bằng nhau.
Đáp ánĐịnh nghĩa: Hình thoi là tứ giác có bốn cạnh bằng nhau.
Chọn đáp án D.
Bài 2: Trong các khẳng định sau, khẳng định nào sai về hình thoi ?
A. Hai đường chéo bằng nhau.
B. Hai đường chéo vông góc và là các đường phân giác của các góc hình thoi.
C. Hai đường chéo cắt nhau tại trung điểm mỗi đường.
D. Hình thoi có 4 cạnh bằng nhau.
Đáp ánĐịnh lí: Trong hình thoi:
+ Hai đường chéo vuông góc với nhau.
+ Hai đường chéo là các đường phân giác các góc của hình thoi.
+ Hai đường chéo cắt nhau tại trung điểm mỗi đường.
⇒ Đáp án A sai.
Chọn đáp án A.
Bài 3: Hai đường chéo của hình thoi có độ dài lần lượt là 8cm và 10cm. Độ dài cạnh của hình thoi đó là ?
A. 6cm. B. √ 41 cm.
C. √ 164 cm. D. 9cm.
Đáp ánĐộ dài đường chéo của hình thoi lần lượt là
→ Độ dài đường chéo của hình thoi là:
Chọn đáp án B.
Bài 4: Hình thoi có độ dài các cạnh là thì chu vi của hình thoi là ?
A. 8cm. B. 44cm.
C. 16cm. D. Cả A, B, C đều sai.
Đáp ánChu vi của hình thoi là Pht = 4 + 4 + 4 + 4 = 16( cm ).
Chọn đáp án C.
Bài 5: Các phương án sau, phương án nào sai?
A. Các trung điểm của bốn cạnh hình chữ nhật là các đỉnh của một hình thoi.
B. Các trung điểm của bốn cạnh hình thoi là bốn đỉnh của hình chữ nhật.
C. Giao điểm của hai đường chéo của hình thoi là tâm đối xứng của hình thoi đó.
D. Hình thoi của bốn trục đối xứng.
Đáp ánĐịnh lí:
+ Hình thoi có hai trục đối xứng là hai đường chéo của hình thoi.
+ Có một tâm đối xứng là giao điểm của hai đường chéo.
Mở rộng:
+ Trong hình chữ nhật, các trung điểm của các cạnh hình chữ nhật là các đỉnh của một hình thoi.
+ Trong hình thoi, các trung điểm của bốn cạnh hình thoi là các hình chữ nhật.
→ Đáp án D sai.
Chọn đáp án D.
Bài 6: Cho hình bình hành ABCD có I là giao điểm hai đường chéo. Biết rằng AC = 6cm và BD = 8cm và AD = 5cm. Tìm khẳng định sai ?
A. Tứ giác ABCD là hình thoi
B. AI = BC
C. AB = BC
D. CD = 5
Đáp ánTheo tính chất hình bình hành ta có: I là trung điểm của AC và BD.
Suy ra:
Xét tam giác AID có: AI2 + ID2 = AD2 (32 + 42 = 52 = 25)
Suy ra: tam giác AID là tam giác vuông: AI ⊥ DI hay AC ⊥ BD
Hình bình hành ABCD có 2 đường chéo AC và BD vuông góc với nhau nên là hình thoi.
Suy ra: AB = BC = CD = DA = 5cm
Chọn đáp án B
Bài 7: Cho hình thoi ABCD có O là giao điểm hai đường chéo, biết AC = 16cm và OB = 6cm. Tính CD
A. 6cm B. 8cm
C. 7cm D.10cm
Đáp ánDo ABCD là hình thoi nên: AO = OC = 1/2 AC = 8cm
Áp dụng định lí Pytago vào tam giác vuông ABO ta có:
AB2 = AO2 + OB2 = 82 + 62 = 100 nên AB = 10cm
Vì ABCD là hình thoi nên AB = CD = 10cm
Chọn đáp án D
Bài 8: Cho tam giác ABC , gọi M, N và P lần lượt là trung điểm của AC; AB và BC. biết AB = BC. Hỏi tứ giác NMPB là hình gì?
A. Hình thoi
B. Hình bình hành
C. Hình chữ nhật
D. Hình thang
Đáp án* Xét tam giác ABC có M và N lần lượt là trung điểm của AC và AB nên MN là đường trung bình của tam giác ABC.
Suy ra: MN// BC và
* Lại có: P là trung điểm của BC nên
Từ (1) và (2) suy ra: MN = BP.
Tứ giác NMPB có 2 cạnh đối MN và BP song song và bằng nhau nên là hình bình hành.
* Lại có: N là trung điểm của AB nên
Theo giả thiết AB = BC nên từ (1) và (2) suy ra: BP = BN
Hình bình hành NMPB có 2 cạnh kề BP và BN bằng nhau nên là hình thoi.
Chọn đáp án A
Bài 9: Cho tam giác ABC cân tại A có AM là đường trung tuyến. Điểm D đối xứng với điểm A qua M. Hỏi tứ giác ABDC là hình gì?
A. Hình bình hành
B. Hình chữ nhật
C. Hình thoi
D. Hình thang cân
Đáp ánDo tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao:
AM ⊥ BC và M là trung điểm của BC.
Do D đối xứng vơi A qua M nên M là trung điểm của AD.
Tứ giác ABDC có hai đường chéo cắt nhau tại trung điểm mỗi đường nên là hình bình hành.
Lại có: AD ⊥ BC nên tứ giác ABDC là hình thoi.
Chọn đáp án C
Bài 10: Cho hình thoi ABCD có CD = 4cm và ∠ABD = 30o. Tính AC
A. 3cm B. 2cm
C. 6cm D. 4cm
Đáp ánDo ABCD là hình thoi nên BD là đường phân giác của góc ∠ABC
Suy ra: ∠ABC = 2∠ABD = 60o
Xét tam giác ABC có AB = BC ( vì ABCD là hình thoi) và ∠ABC = 60o
Suy ra: tam giác ABC là tam giác đều.
Vì ABCD là hình thoi nên AB = BC = CD = DA =4cm
Suy ra : AC = AB = BC = 4cm.
Chọn đáp án D