Cách tìm điều kiện để biên độ A, A1, A2 đạt cực đại, cực tiểu hay, chi tiết
Với Cách tìm điều kiện để biên độ A, A1, A2 đạt cực đại, cực tiểu hay, chi tiết Vật lý lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Cách tìm điều kiện để biên độ A, A1, A2 đạt cực đại, cực tiểu hay, chi tiết.
Cách tìm điều kiện để biên độ A, A1, A2 đạt cực đại, cực tiểu hay, chi tiết
1. Phương pháp
- Dựng các véc tơ A1, A2, A hoặc xây dựng được các biểu thức thể hiện mối quan hệ giữa đại lượng cần đánh giá cực trị với các đại lượng khác.
- Dựa vào yêu cầu của bài toán áp dụng định lí Sin trong tam giác
Hoặc sử dụng các bất đẳng thức như cosin, Bunhiacopxki, cực trị của hàm số để suy ra điều kiện cần tìm.
- Áp dụng các hệ thức lượng trong tam giác để tính toán kết quả.
2. Ví dụ
Ví dụ 1: Câu 18 – ĐH2012 – M371. Cho x1 = A1cos(πt + π/6) cm và x2 = 6cos(πt – π/2) cm là phương trình của hai dao động cùng phương. Dao động tổng hợp của hai dao động này có phương trình x = Acos(πt + φ) cm. Thay đổi A1 cho đến khi biên độ A đạt giá trị cực tiểu thì
A. φ = 0 rad. B. φ = –π/3 rad. C. φ = –π/6 rad. D. φ = π rad.
Hướng dẫn:
Ví dụ 2: Một chất điểm tham gia đồng thời hai dao động cùng phương. Phương trình ly độ của các dao động thành phần và dao động tổng hợp lần lượt là x1 = A1cos(ωt) cm; x2 = 3cos(ωt + α) cm; và x = Acos(ωt+ π/6) cm. Biên độ dao động A1 có giá trị lớn nhất là
A. 9 cm. B. 6 cm. C. 8 cm. D. 12 cm.
Hướng dẫn:
Ví dụ 3: Một chất điểm tham gia đồng thời hai dao động điều hòa cùng phương, cùng tần số, có phương trình là x1 = A1cos(ωt – π/3) và x2 = A2cos(ωt + π/3). Dao động tổng hợp có biên độ 4√3 cm. Khi A1 đạt giá trị cực đại thì A2 có giá trị là
A. 2 cm. B. 3 cm. C. 5 cm. D. 4 cm.
Hướng dẫn:
Khi A1 đạt giá trị cực đại
Độ lệch pha Δφ = π/3 – (-π/3) = 2π/3.
Áp dụng định lí hàm số sin trong tam giác OAA1: