Tổng hợp hai dao động điều hòa cùng phương cùng tần số - Phương pháp giản đồ Fre-nen (Lý thuyết + 35 bài tập có đáp án) - Vật lí 12
Với Lý thuyết Tổng hợp hai dao động điều hòa cùng phương cùng tần số - Phương pháp giản đồ Fre-nen Vật lý lớp 12 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học sinh nắm được Lý thuyết Tổng hợp hai dao động điều hòa cùng phương cùng tần số - Phương pháp giản đồ Fre-nen.
Tổng hợp hai dao động điều hòa cùng phương cùng tần số - Phương pháp giản đồ Fre-nen - Vật lí 12
A . Lý thuyết:
I) Cách biểu diễn phương trình dao động điều hòa bằng một vecto quay.
- Vectơ OM→ biểu diễn phương trình dao động điều hòa: x = Acos(ωt + φ) tại thời điểm t có những đặc điểm sau:
x = A cos(ωt + φ) | OM→ ( O là gốc tọa độ) |
Biên độ A | Độ dài |OM→| = A |
Tần số góc ω | Quay đều với tốc độ góc ω |
Pha dao động ωt + φ | Góc hợp bởi vectơ và trục Ox |
II) Phương pháp giản đồ Fre-nen.
- Yêu cầu bài toán: tìm li độ của một vật thực hiện đồng thời 2 dao động điều hòa cùng phương, cùng tần số: x1 = A1cos(ωt + φ1 )
x2 = A2cos(ωt + φ2 )
Khi đó li độ của vật x = x1 + x2 có phương trình như thế nào?
- Phương pháp giản đồ Fre-nen.
B1: biểu diễn li độ x1, x2 tại thời điểm ban đầu bằng các Vectơ (OM1→, OM2→
B2: li độ x = x1 + x2 của dao động tổng hợp tại thời điểm ban đầu được biểu diễn bằng OM→ = OM1→ + OM2→
B3: Sử dụng quy tắc hình bình hành để tìm các đại lượng đặc trưng.
Phương dao động: cùng phương với 2 dao động thành phần.
Tần số: cùng tần số ω với 2 dao động thành phần.
Biên độ
Pha ban đầu φ:
- Nhận xét: biên độ A phụ thuộc vào A1,A2 và độ lệch pha (φ1 - φ2)
+) Amax = A1 + A2 khi 2 dao động cùng pha: (φ1 - φ2 ) = 2nπ (n = 0, ±1, ±2,...)
+) Amin = |A1 - A2 | khi 2 dao động ngược pha: (φ1 - φ2 ) = (2n + 1)π (n = 0, ±1, ±2,...)
III) Sử dụng máy tính để tổng hợp dao động.
- VD: để tổng hợp 2 dao động x1 = 1 cos(ωt + 2π/3) và x2 = √3cos(ωt + π/6) ta dùng máy tính Casio fx 570 – ES, bấm như sau:
B1: Chọn đơn vị góc là radian
B2: Chọn chế độ tính toán với số phức (khi đó máy tính sẽ hiện CMPLX)
B3: Nhập số liệu
(Màn hình máy tính sẽ hiện thị )
B4: để hiện ra kết quả bấm
Màn hình sẽ hiện kết quả:
Nghĩa là biên độ A = 2 và pha ban đầu φ = π/3
B . Bài tập:
Bài 1: Một vật có khối lượng không đổi thực hiện đồng thời hai dao động điều hòa có phương trình lần lượt là x1 = 10cos(2πt + φ) cm; x2 = A2cos(2πt − π/2) cm thì dao động tổng hợp là x = Acos(2πt − π/3) cm. Khi biên độ dao động của vật bằng nửa giá trị cực đại thì biên độ dao động A2 có giá trị là:
- Từ hình vẽ, áp dụng định lý hàm cos trong tam giác ta có:
- Phương trình trên luôn có nghiệm nên:
- Với:
thay vào phương trình trên ta được:
Chọn đáp án A
Bài 2: Một chất điểm tham gia đồng thời hai dao động điều hòa trên cùng một trục Ox có phương trình: x1 = 2√3sinωt cm, x2 = A2cos(ωt + φ2) cm. Phương trình dao động tổng hợp x = 2cos(ωt + φ) cm. Biết φ2 – φ = π/3. Cặp giá trị nào của A2 và φ2 sau đây là đúng?
- Ta có:
- Dựa vào các dữ kiện ta vẽ được giản đồ vecto như hình sau:
- Áp dụng định lý hàm sin ta được:
- Sử dụng máy tính để thử các đáp án thì đáp án A là thỏa mãn phương trình trên.
Chọn đáp án A
Bài 3: Tổng hợp hai dao động điều hoà cùng phương, cùng tần số, cùng biên độ a là một dao động có biên độ cũng bằng a thì 2 dao động thành phần có độ lệch pha là:
A. π/2 B. π/4
C. π/3 D. 2π/3
- Ta có:
Chọn đáp án D
Bài 4: Một chất điểm thực hiện đồng thời hai dao động điều hòa cùng phương cùng chu kì T mà đồ thị x1 và x2 phụ thuộc thời gian biểu diễn trên hình vẽ.
Biết x2 = v1T, tốc độ cực đại của chất điểm là 53,4 cm/s. Giá trị T gần giá trị nào nhất sau đây?
A. 2,56 s. B. 2,99 s.
C. 2,75 s. D. 2,64 s.
- Ta có:
- Từ phương trình x1 và x2 ta thấy 2 dao động vuông pha với nhau nên:
Chọn đáp án B
Bài 5: Hai dao động điều hoà: x1 = A1cos(ωt + φ1) và x2 = A2cos(ωt + φ2). Biên độ dao động tổng hợp của chúng đạt cực đại khi:
A. φ2 – φ1 = (2k + 1)π.
B. φ2 – φ1 = 2kπ.
C. φ2 – φ1 = (2k + 1)π/2.
D. φ2 – φ1 = π/4.
Dao động tổng hợp đạt cực đại khi:
Chọn đáp án B
Bài 6: Tổng hợp hai dao động điều hoà cùng phương, cùng tần số, cùng biên độ a là một dao động có biên độ a√2 thì 2 dao động thành phần có độ lệch pha là:
A. π/2 B. π/4
C. 0. D. π
- Ta có:
Chọn đáp án A
Bài 7: Chuyển động của một vật là hai dao động điều hòa cùng phương. Hai dao động này có phương trình lần lượt là x1 = 4cos(10t - π/6) (cm) và x2 = A2cos(10t - π/6) (cm). Độ lớn của vận tốc ở vị trí cân bằng là 60 cm/s. Giá trị của A2 bằng:
A. 4 cm. B. 6 cm.
C. 2 cm. D. 8 cm.
- Tại vị trí cân bằng vật đạt vận tốc có giá trị cực đại nên:
- Hai dao động cùng pha thì biên độ của dao động tổng hợp là:
Chọn đáp án C
Bài 8: Dao động của một chất điểm là tổng hợp của hai dao động điều hòa cùng phương, có phương trình li độ lần lượt là x1 = 3cos(2πt/3 - π/2) (cm) và x2 = 3√3cos(2πt/3) (cm) (x1 và x2 tính bằng cm, t tính bằng s). Tại các thời điểm x1 = x2 li độ dao động tổng hợp là:
A. ± 7,59 cm. B. ± 5,19 cm.
C. ± 6 cm. D. ± 3 cm.
- Phương trình dao động tổng hợp:
- Tại thời điểm x1 = x2:
- Ta có:
Chọn đáp án B
Bài 9: Dao động của một vật là tổng hợp của hai dao động điều hòa cùng phương, có phương trình lần lượt là x1 = 4cos(√3t/2 + π/3) (cm) và x2 = 5cos(√3t/2 + 2π/3) (cm) (x1; x2 tính bằng , t tính bằng ). Gia tốc của vật có độ lớn cực đại là:
- Dao động tổng hợp của vật có phương trình là:
- Vậy gia tốc cực đại của vật có độ lớn là:
Chọn đáp án C
Bài 10: Một vật thực hiện đồng thời 2 dao động điều hoà cùng phương, li độ x1 và x2 phụ thuộc thời gian như hình vẽ. Phương trình dao động tổng hợp là:
A. x = 2cos(ωt – π/3) cm.
B. x = 2cos(ωt + 2π/3) cm.
C. x = 2cos(ωt + 5π/6) cm.
D. x = 2cos(ωt – π/6) cm.
- Từ đồ thị ta viết được phương trình của x1 và x2 là:
* Phương trình của x1: biên độ A1 = √3 cm, tại thời điểm t = 0 thì x1 = 0 và đang xuống phía âm nên:
* Phương trình của x2: biên độ A2 = 1 cm, tại t = 0 thì:
- Sử dụng máy tính để tổng hợp 2 dao động trên:
Chọn đáp án B
Bài 11: Một vật tham gia đồng thời 2 dao động điều hoà cùng phương cùng tần số x1 = 5cos(4t + φ1) cm, x2 = 3cos(4t + φ2) cm. Biên độ dao động tổng hợp thoả mãn:
A. 2 cm ≤ A≤ 4 cm. B. 5 cm ≤ A≤ 8 cm.
C. 3 cm ≤ A≤ 5 cm. D. 2 cm ≤ A≤ 8 cm.
- Ta có:
Chọn đáp án D
Bài 12: Hai dao động điều hòa cùng phương, cùng tần số có biên độ lần lượt là A1 = 8 cm; A2 = 15 cm và lệch pha nhau π/2. Dao động tổng hợp của hai dao động này có biên độ bằng:
A. 23 cm. B. 7 cm.
C. 11 cm. D. 17 cm.
- Ta có:
Chọn đáp án D
Bài 13: Hai dao động điều hòa cùng phương cùng tần số có biên độ đều bằng 6 cm và có pha ban đầu lần lượt là - π/6 và - π/2. Dao động tổng hợp của hai dao động này có biên độ là:
- Áp dụng công thức tính biên độ của dao động tổng hợp các dao động thành phần :
Chọn đáp án A
Bài 14: Một vật thực hiện đồng thời hai dao động điều hòa cùng phương x1 = 4√3cos10πt (cm) và i, t đo bằng giây. Vận tốc của vật tại thời điểm t = 2s là:
A. 20π (cm/s) B. 40π (cm/s)
C. 10π (cm/s) D. 40π (cm/s)
- Dao động tổng hợp của vật đó là:
- Vận tốc của vật ở thời điểm là:
Chọn đáp án B
Bài 15: Một vật thực hiện đồng thời 3 dao động điều hòa cùng phương cùng tần số có phương trình lần lượt là:
x1 = A1cos(ωt + π/2); x2 = A2cosωt; x3 = A3cos(ωt - π/2).
- Tại thời điểm t1 các giá trị li độ: x1 = - 10√3 cm; x2 = 15 cm; x3 = 30√3 cm.
- Tại thời điểm t2 các giá trị li độ: x1 = -20 cm; x2 = 0 cm; x3 = 60 cm.
Tính biên độ dao động tổng hợp?
A. 40 cm B. 50 cm
C. 40√3 cm D. 60 cm
- Nhận thấy x1 và x3 ngược pha nhau và cùng vuông pha với x2 nên khi x2 (min) là x1, x3 (max) tại thời điểm t2 thì x2 = 0 nên:
- Mặt khác x1 vuông pha x2 nên tại thời điểm t1 ta có:
- Biên độ dao đổng tổng hợp:
Chọn đáp án B
Bài 16: Dao động của một vật có khối lượng 200 g là tổng hợp của hai dao động điều hòa cùng phương D1 và D2. Hình bên là đồ thị biểu diễn sự phụ thuộc của li độ của D1 và D2 theo thời gian. Mốc thế năng tại vị trí cân bằng của vật. Biết cơ năng của vật là 22,2 mJ. Biên độ dao động của D2 có giá trị gần nhất với giá trị nào sau đây?
A. 5,1 cm. B. 5,4 cm.
C. 4,8 cm. D. 5,7 cm.
- Ta có:
- Từ đồ thị ta thấy: A1 = 3 cm.
- Cũng theo đồ thị thì ta thấy cứ một ô ngang theo trục thời gian là 0,1s.
- Quan sát đồ thị ta thấy thời gian dao động D2 đi từ VTCB ra biên mất thời gian là 2 ô nên:
- Gọi Δ1 là thời gian kể từ lúc D1 bắt đầu dao động đến khi lần đầu tiên qua VTCB:
- Gọi Δ2 là thời gian kể từ lúc D2 bắt đầu dao động đến khi lần đầu tiên đến biên âm:
Chọn đáp án A
Bài 17: Một vật tham gia đồng thời hai dao động điều hoà cùng phương có phương trình lần lượt là x1 = 5cos(5πt + φ1) (cm); x2 = 5cos(5πt + φ2) (cm) với 0 ≤ φ1 – φ2 ≤ π. Biết phương trình dao động tổng hợp x = 5cos(5πt + π/6) (cm). Hãy xác định φ1.
A. π/6. B. –π/6.
C. π/2. D. 0.
- Ta có :
- Đối chiếu với :
Chọn đáp án C
Bài 18: Một chất điểm tham gia đồng thời hai dao động điều hòa trên cùng một trục Ox có phương trình: x1 = 4cos(ωt + π/3) cm, x2 = A2cos(ωt + φ2) cm. Phương trình dao động tổng hợp x = 2cos(ωt + φ) cm. Biết φ – φ2 = π/2. Cặp giá trị nào của A2 và φ sau đây là đúng?
A. 3√3 cm và 0. B. 2√3 cm và π/4.
C. 3√3 cm và π/2. D. 2√3 cm và 0.
Chọn đáp án D
Bài 19: Cho hai dao động điều hòa cùng phương có phương trình x1 = 3cos10πt (cm) và x2 = 4cos(10πt + 0,5π) (cm). Dao động tổng hợp của hai dao động này có biên độ là:
A. 1 cm. B. 3 cm.
C. 5 cm. D. 7 cm.
- Phương trình dao động tổng hợp: x = x1 + x2
- Chuyển sang chế độ số phức rồi bấm máy tổng hợp dao động ta được:
=> Biên độ dao động tổng hợp là A = 5 cm
Chọn đáp án C
Bài 20: Một tham gia đồng thời vào hai dao động điều hòa có phương trình x1 = 4√3cos(10πt) cm và x2 = 4sin(10πt) cm. Vận tốc của vật khi t = 2 s là:
A. 123 cm/s. B. 120,5 cm/s.
C. – 123 cm/s. D. 125,7 cm/s.
- Phương trình dao động tổng hợp:
- Vận tốc của vật khi t = 2s là:
Chọn đáp án D
Bài 21: Dao động của một chất điểm là tổng hợp của hai dao động điều hòa cùng phương cùng tần số. Dao động thứ nhất có phương trình li độ x1 = A1cos(ωt + φ1) (cm), dao động thứ hai có phương trình li độ x2 = A2cos(ωt + φ2) (cm). Biết 3x12 + 2x22 = 11. Khi dao động thứ nhất có li độ 1 cm và tốc độ 12 cm/s thì dao động hai có tốc độ bằng:
A. 3 cm/s. B. 4 cm/s.
C. 9 cm/s. D. 12 cm/s.
- Đạo hàm 2 vế ta được:
- Thay vào phương trình (*) ta giải ra được:
Chọn đáp án C
Bài 22: Một vật thực hiện đồng thời ba dao động cùng phương:
x1 = A1cos(ωt + π/2) (cm), x2 = A2cosωt (cm), x3 = A3cos(ωt – π/2) (cm).
- Tại thời điểm t1 các giá trị li độ lần lượt là: -10√3cm; 15 cm; 30√3 cm.
- Tại thời điểm t2 các giá trị li độ là x1(t2) = –20 cm, x2 (t2) = 0.
- Biên độ dao động tổng hợp là:
A. 40 cm. B. 15 cm.
C. 40√3 cm. D. 50 cm.
- Ta nhận thấy x1 và x3 ngược pha nhau và cùng vuông pha với x2 nên khi x2 cực tiểu thì x1; x3 cực đại:
- Mặt khác:
- Biên độ dao động tổng hợp:
Chọn đáp án D
Bài 23: Một chất điểm tham gia đổng thời hai dao động điều hòa trên cùng một trục Ox với các phương trình x1 = 2√3sinωt (cm) và x2 = A2cos(ωt + φ2) (cm). Phương trình dao động tổng hợp là x = 2cos(ωt + φ) (cm). Biết. Cặp giá trị nào của A2 và φ2 là đúng?
- Đổi:
- Tìm thành phần A1, ta có:
- Thay số vào ta có:
- Giải phương trình trên ta được:
- Để tìm φ2 ta đi xác định biên độ tổng hợp A:
- Suy ra:
Chọn đáp án A
Bài 24: Hai dao động điều hòa có phương trình dao động lần lượt là x1 = 5cos(2πt + π/6) (cm) và x2 = 5√3cos(2πt + 2π/3) (cm). Biên độ và pha của dao động tổng hợp là:
- Dùng máy tính bấm nhanh:
- Vậy: A = 10 cm và φ = π/2
Chọn đáp án A
Bài 25: Vật tham gia đồng thời vào 2 dao động điều hoà cùng phương cùng tần số x1 = A1cosωt và x2 = A2cos(ωt - π/2). Với vmax là vận tốc cực đại của vật. Khi hai dao động thành phần x1 = x2 = x0 thì x0 bằng:
- Biên độ của dao động tổng hợp:
- Hai dao động vuông pha nên:
- Gọi vmax là vận tốc cực đại của vật trong quá trình dao động:
Chọn đáp án B
Bài 26: Hai dao động điều hoà: x1 = A1cos(ωt + φ1) và x2 = A2cos(ωt + φ2). Biên độ dao động tổng hợp của chúng đạt cực tiểu khi:
A. φ2 – φ1 = (2k + 1)π.
B. φ2 – φ1 = 2kπ.
C. φ2 – φ1 = (2k + 1)π/2.
D. φ2 – φ1 = π/4.
- Ta có:
Chọn đáp án A
Bài 27: Một chất điểm thực hiện đồng thời hai dao động điều hòa cùng phương cùng tần số có đồ thị li độ phụ thuộc vào thời gian như hình vẽ. Tốc độ cực đại của vật là:
A. 10,96 cm/s. B. 8,47 cm/s.
C. 11,08 cm/s. D. 9,61 cm/s.
- Dựa vào đồ thị ta có thể thấy được chu kì của 2 dao động là: T1 = T2 = 12 s
- Xét với x1 ta thấy:
+ Khi t = 0 thì x1 = 4 cm, khi t = 3 s = T/4 thì :
+ Vì tại t = 0 thì x1 = 4 cm và đang giảm nên :
- Xét với x2 thì ta có:
+ Từ t = 0:
- Từ x = 0 đến x = -4√3 cm vật đi mất t = 1s :
- Tổng hợp (1) và (2) ta được:
Chọn đáp án C
Bài viết liên quan
- Con lắc lò xo ( Lý thuyết + 35 bài tập có đáp án ) - Vật lí 12
- Con lắc đơn ( Lý thuyết + 35 bài tập có đáp án ) - Vật lí 12
- Dao động tắt dần - Dao động cưỡng bức ( Lý thuyết + 35 bài tập có đáp án ) - Vật lí 12
- Chuyên đề xác định các đại lượng đặc trưng trong dao động điều hòa ( Lý thuyết +35 bài tập có đáp án ) - Vật lí 12
- Chuyên đề giải bài tập Mối quan hệ giữa x, v, a, f trong dao động điều hòa (Lý thuyết + 35 bài tập có đáp án) - Vật lí 12