Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa chọn ngẫu nhiên

Lời giải Bài 5 trang 107 Toán 6 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 6.

248


Giải Toán 6 Chân trời sáng tạo Bài tập cuối chương 9

Bài 5 trang 107 Toán lớp 6 Tập 2Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa chọn ngẫu nhiên cho ở bảng sau:

Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa

 (Ví dụ: Số học sinh có kết quả Toán – giỏi, Ngữ văn – khá là 20).

Hãy tính xác suất thực nghiệm của sự kiện một học sinh được chọn ra một cách ngẫu nhiên có kết quả:

a) Môn Toán đạt loại giỏi;

b) Loại khá trở lên ở cả hai môn;

c) Loại trung bình ở ít nhất một môn.

Lời giải:

Tổng số học sinh tham gia kiểm tra là:

40 + 20 + 15 + 15 + 30 + 10 + 5 + 15 + 20 = 170 (học sinh).

a) Số học sinh môn Toán đạt loại giỏi là: 

40 + 20 + 15 = 75 (học sinh).

Xác suất thực nghiệm của sự kiện chọn ra học sinh môn Toán đạt loại giỏi là: 

Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa

Vậy xác suất thực nghiệm của sự kiện chọn một học sinh được ra một cách ngẫu nhiên có kết quả học sinh môn Toán đạt loại giỏi là Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa.

b) Số học sinh được chọn đạt loại khá trở lên ở cả hai môn bằng tổng số học sinh đạt loại giỏi cả hai môn, giỏi một môn – khá một môn và khá cả hai môn.

Khi đó, số học sinh được chọn đạt loại khá trở lên ở cả hai môn là:

40 + 15 + 20 + 30 =105 (học sinh).

Xác suất thực nghiệm của sự kiện một học sinh được chọn đạt loại khá ở cả hai môn là:

Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa

Vậy xác suất thực nghiệm của sự kiện chọn một học sinh được ra một cách ngẫu nhiên có kết quả loại khá ở cả hai môn là Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa.

c) Số học sinh được chọn đạt loại trung bình ở ít nhất một môn, nghĩa là số học sinh đạt loại trung bình một trong hai môn (giỏi một môn – trung bình một môn, khá một môn – trung bình một môn) hoặc đạt loại trung bình cả hai môn.

Do đó, số học sinh đạt loại trung bình ít nhất một môn là:

5 + 15 + 20 + 15 + 10 = 65 (học sinh).

Xác suất thực nghiệm của sự kiện học sinh được chọn đạt loại trung bình ở ít nhất một môn là:

Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa

Vậy xác suất thực nghiệm của sự kiện chọn một học sinh được ra một cách ngẫu nhiên có kết quả đạt loại trung bình ở ít nhất một môn là Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa.

Bài viết liên quan

248