Giải Toán 6 Chân trời sáng tạo Bài 13: Bội chung, Bội chung nhỏ nhất
Hoidap.vietjack.com trân trọng giới thiệu: lời giải bài tập Toán lớp 6 Bài 13: Bội chung, Bội chung nhỏ nhất sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 6 Bài 13. Mời các bạn đón xem:
Giải bài tập Toán 6 Bài 13: Bội chung, Bội chung nhỏ nhất
Lời giải:
Sau bài học này chúng ta sẽ biết được cách tìm mẫu số chung nhỏ nhất của các phân số chính là cách tìm bội chung nhỏ nhất của các mẫu số đó.
Hoạt động khám phá 1 trang 40 Toán lớp 6 Tập 1:
Hình sau thể hiện số giây tính từ lúc 8 giờ tối đến lúc đèn sẽ phát sáng các lần tiếp theo:
b) Viết các tập B(2), B(3). Chỉ ra ba phần tử chung của hai tập hợp này.
Lời giải:
a) Dựa vào hình vẽ trên, ta thấy được kể từ giây đầu tiên thì sau 12 giây hai đèn sẽ sáng cùng lúc.
b) Để tìm được bội của một số tự nhiên, ta lần lượt nhân số đó với các số 0, 1, 2, 3….
Khi đó ta có:
B(2) = {0; 2; 4; 6; 8; 10; 12; 14; 16; 18; …}
B(3) = {0; 3; 6; 9; 12; 15; 18; 21; …}
Ba phần tử chung (khác 0) của hai tập hợp này là: 6; 12; 18.
Thực hành 1 trang 40 Toán lớp 6 Tập 1:
Các khẳng định sau đúng hay sai? Giải thích.
Lời giải:
a) B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36; 40; …}
B(10) = {0; 10; 20; 30; 40; 50; 60; …}
Hai tập hợp này có cùng một số phần tử chung như 0; 20; 40; …Ta nói chúng là bội chung của 4 và 10. Ta viết BC(4, 10) = {0; 20; 40; …}
Do đó 20 ∈ BC(4, 10).
Vậy 20 ∈ BC(4, 10) là đúng.
b) B(14) = {0; 14; 28; 42; 56; 70; 84; 98; 112; 126 …}
B(18) = {0; 18; 36; 54; 72; 90; 108; 126; …}
Hai tập hợp này có cùng một số phần tử chung như 0; 126; …Ta nói chúng là bội chung của 14 và 18. Ta viết BC(14, 18) = {0; 126;…}
Do đó 36 ∉ BC(14, 18).
Vậy 36 ∈ BC(14, 18) là sai.
c) B(12) = {0; 12; 24; 36; 48; 60; 72; 84; 96; …}
B(18) = {0; 18; 36; 54; 72; 90; 108; 126; …}
⇒ B(36) = {0; 36; 72; 108; 144; 180 …}
⇒72 ∈ BC(12, 18, 36)
Vậy 72 ∈ BC(12, 18, 36) là đúng.
Thực hành 2 trang 41 Toán lớp 6 Tập 1:
a) Các tập hợp: B(3); B(4); B(8).
b) Tập hợp M các số tự nhiên nhỏ hơn 50 là bội chung của 3 và 4.
c) Tập hợp K các số tự nhiên nhỏ hơn 50 là bội chung của 3; 4 và 8.
Lời giải:
a) Các tập hợp:
B(3) = {0; 3; 6; 9; 12; 15; 18; 21; 24; 27; 30; 33; 36; 39; 42; 45; 48; 51; 54; …}
B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44; 48; 52; 56; …}
B(8) = {0; 8; 16; 24; 40; 48; 56; 64; 72; …}
b) Ta có: BC(3, 4) = {0; 12; 24; 36; 48; …}
Vì M là tập hợp các số tự nhiên nhỏ hơn 50 và là bội chung của 3 và 4 nên M được viết:
M = {0; 12; 24; 36; 48}.
c) Ta có: BC(3, 4, 8) = {0; 24; 48; 72; …}
Vì tập hợp K gồm các số tự nhiên nhỏ hơn 50 là bội chung của 3; 4 và 8 nên K được viết:
K = {0; 24; 48}.
Hoạt động khám phá 2 trang 51 Toán lớp 6 Tập 1:
Lời giải:
- Ta có:
B(6) = {0; 6; 12; 18; 24; 30; 36; 42; 48; …}
B(8) = {0; 8; 16; 24; 32; 40; 48; …}
Do đó: BC(6, 8) = {0; 24; 48; …}
Số nhỏ nhất khác 0 trong tập hợp trên là 24 và 24 là ước của các bội chung của 6 và 8. Nói cách khác các bội chung của 6 và 8 cũng là bội của BCNN này.
- Lại có:
B(3) = {0; 3; 6; 9; 12; 15; 18; 21; 24; 27; 30; 33; 36; 39; 42; 45; 48; 51; 54; …}
B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44; 48; 52; 56; …}
B(8) = {0; 8; 16; 24; 40; 48; 56; 64; 72; …}
Do đó: BC(3, 4, 8) = {0; 24; 48; …}
Số nhỏ nhất khác 0 trong tập hợp trên là 24 và 24 là ước của tất cả các bội chung của 3, 4, 8. Nói cách khác thì các bội chung của 3, 4, 8 là bội của BCNN này.
Lời giải:
Ta có:
B(4) = {0; 4; 8; 12; 16; 20; 24; 28;…}
B(7) = {0; 7; 14; 21; 28; 35; …}
Do đó: BC(4, 7) = {0; 28; 56; …}
Trong các bội chung của 4 và 7 thì 28 là số nhỏ nhất khác 0
Nên BCNN(4, 7) = 28.
Ta có ƯCLN(4, 7) = 1 nên 4 và 7 là hai số nguyên tố cùng nhau.
Thực hành 4 trang 42 Toán lớp 6 Tập 1: Tìm BCNN(24, 30); BCNN(3, 7, 8); BCNN(12, 16, 48).
Lời giải:
+) Phân tích mỗi số 24, 30 ra thừa số nguyên tố: 24 = 23.3; 30 = 2.3.5.
Các thừa số chung là 2 và 3, thừa số riêng là 5.
Lập tích các thừa số chung và riêng đã chọn ở trên, mỗi thừa số lấy với số mũ lớn nhất của nó: 23.3.5.
Vậy BCNN(24, 30) = 23.3.5 = 120.
+) Phân tích mỗi số 3, 7, 8 ra thừa số nguyên tố: 3 = 3; 7 = 7; 8 = 23.
Các thừa số riêng là 2; 3; 7.
Lập tích các thừa số chung và riêng đã chọn ở trên, mỗi thừa số lấy với số mũ lớn nhất của nó: 23.3.7.
Vậy BCNN(3, 7, 8) = 23.3.7 = 168..
+) Phân tích mỗi số 12, 16 và 48 ra thừa số nguyên tố: 12 = 23.4; 16 = 24.3.
Các thừa số chung và riêng là: 2, 3.
Lập tích các thừa số chung và riêng đã chọn ở trên, mỗi thừa số lấy với số mũ lớn nhất của nó: 24.3.
Vậy BCNN(12, 16,48) = 24.3 = 48.
Thực hành 5 trang 42 Toán lớp 6 Tập 1: Tìm BCNN(2, 5, 9); BCNN(10, 15, 30).
Lời giải:
+) Vì 2; 5; 9 đôi một nguyên tố cùng nhau. Khi đó BCNN của chúng là tích của các số đó
Do đó BCNN(2, 5, 9) = 2.5.9 = 90.
+) Vì 30 chia hết cho 10 và 15 nên 30 là bội của 10 và 15
Do đó: BCNN(10, 15, 30) = 30
Thực hành 6 trang 43 Toán lớp 6 Tập 1:
1) Quy đồng mẫu các phân số sau:
2) Thực hiện các phép tính sau:
Lời giải:
1)
a) 12 = 22.3, 30 = 2.3.5;
Các thừa số chung và riêng là 2, 3, 5.
Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất: 22.3.5 = 60.
Khi đó: BCNN(12, 30) = 60
60 : 12 = 5; 60 : 30 = 2. Do đó:
b) 2 = 2, 5 = 5, 8 = 23
Các thừa số chung và riêng là 2, 5.
Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất: 23.5 = 40.
Khi đó: BCNN(2, 5, 8) = 40
40:2 = 20; 40:5 = 8; 40:8 = 5. Do đó:
2)
a) Ta có BCNN(6,8) = 24.
24: 6 = 4; 24:8 = 3. Do đó
b) Ta có BCNN(24, 30) = 120.
120:24 = 5; 120:30 = 4. Do đó:
Bài 1 trang 43 Toán lớp 6 Tập 1:
a) BC(6, 14); b) BC(6, 20, 30);
c) BCNN(1, 6); d) BCNN(10, 1, 12);
Lời giải:
a) Ta có: 6 = 2.3; 14 = 2.7 ⇒ BCNN(6,14) = 2.3.7 = 42.
Khi đó tập hợp bội chung của 6 và 14 là tập hợp bội của 42:
BC(6, 14) = B(42) = {0; 42; 84; 126; …}.
b) Ta có: 6 = 2.3; 20 =22.5; 30 = 2.3.5 ⇒ BCNN(6, 20, 30) = 22.3.5 =60
Khi đó tập hợp bội chung của 6, 20 và 30 là tập hợp bội của 60:
BC(6, 20, 30) = B(60) = {0; 60; 120; 180; …}.
c) Vì 1 và 6 là hai số nguyên tố cùng nhau nên BCNN(1, 6) = 1.6 = 6.
d) Ta có: BCNN(10, 1, 12) = BCNN(10, 12)
Phân tích 10 và 12 ra thừa số nguyên tố: 10 = 2.5, 12 = 22.3.
Suy ra BCNN(10, 12) = 22.3.5 = 60.
Vậy BCNN(10, 12) = 22.3.5 = 60.
e) Vì 5 và 14 là hai số nguyên tố cùng nhau nên BCNN(5, 14) = 5.14 = 70.
Bài 2 trang 43 Toán lớp 6 Tập 1:
Lời giải:
a) Các bội của 48 là 0, 48, 96, 144, 196,…
Do đó: A = {0; 48; 96; 144; 192;…}
BC(12, 16) = {0; 48; 96; 144; 192;…}
* Nhận xét: Tập hợp BC(12, 16) chính là tập hợp A.
b)
i) Ta có: 24 = 23.3; 30 = 2.3.5.
Suy ra BCNN(24,30) = 23.3.5 = 12=.
Vậy BC(24, 30) = B(120) = {0; 120; 240; 360; 480; …}
ii) Ta có: 42 = 2.3.7; 60 =22.3.5.
Suy ra BCNN(42,60) = 22.3.5.7 = 420.
Vậy BC(42, 60) = B(42) = {0; 420; 840; 1260; …}.
iii) Ta có: 60 = 22.3.5; 150 = 2.3.52
⇒ BCNN( 60, 150) = 22.3.52 = 300.
BC(60, 150) = B(300) = {0; 300; 600; 900; …}.
iv) Ta có:
⇒ BCNN( 28,35) = 22.5.7 =140.
BC(28,35) = B(140) = {0; 140; 280; 420;...}
Bài 3 trang 43 Toán lớp 6 Tập 1:
Quy đồng mẫu số các phân số sau (có sử dụng bội chung nhỏ nhất):
Lời giải:
a) 16 = 24, 24 = 23.3
Khi đó BCNN(16, 24) = 24.3 = 48.
48:16 = 3; 48:24 = 2. Do đó:
b) 20 = 22.5; 30 = 2.3.5; 60 = 22.3.5.
Khi đó BCNN(20, 30, 15) = 22.3.5 = 60.
60:20 = 3; 60:30 = 2; 60:15 = 4. Do đó:
Bài 4 trang 44 Toán lớp 6 Tập 1:
Thực hiện phép tính (có sử dụng bội chung nhỏ nhất):
Lời giải:
a) BCNN(15, 10) = 30
b) BCNN(6, 9, 12) = 36
c) BCNN(24, 21) = 168
d) BCNN(36, 24) = 72
Lời giải:
- Gọi x là số bông sen chị Hòa có. (x là số tự nhiên thuộc khoảng từ 200 đến 300)
- Vì chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông đều vừa hết nên số bông sen chị Hòa có là bội chung của 3, 5 và 7.
- Suy ra x ∈ BC(3, 5, 7)
Vì 3, 5, 7 từng đôi một là số nguyên tố cùng nhau
⇒ BCNN(3, 5, 7) = 3 . 5 . 7 =105
⇒ BC(3, 5, 7) = B(105) = {0; 105; 210; 315;…}
⇒ x ∈ BC(3, 5, 7) ={0; 105; 210; 315;…}
Mà 200 ≤ x ≤ 300 Nên x = 210.
Số bông sen chị Hòa có là 210 bông.
Bài viết liên quan
- Giải Toán 6 Chân trời sáng tạo Bài 10: Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố
- Giải Toán 6 Chân trời sáng tạo Bài 11: Hoạt động thực hành và trải nghiệm
- Giải Toán 6 Chân trời sáng tạo Bài 12: Ước chung, Ước chung lớn nhất
- Giải Toán 6 Chân trời sáng tạo Bài 14: Hoạt động thực hành và trải nghiệm
- Giải Toán 6 Chân trời sáng tạo Bài tập cuối chương 1