a) Cho hai số thực a = –1,25 và b = –2,3. So sánh: a và b; |a| và |b|

Lời giải Bài 2.30 trang 39 Toán 7 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7 Tập 1.

359


Giải Toán 7 Bài tập cuối chương 2 trang 39 

Bài 2.30 trang 39 Toán 7 Tập 1:

a) Cho hai số thực a = –1,25 và b = –2,3. So sánh: a và b; |a| và |b|.

b) Ta có nhận xét trong hai số âm, số nào có giá trị tuyệt đối lớn hơn là số bé hơn.

Em hãy áp dụng nhận xét này để so sánh –12,7 và –7,12.

Lời giải:

a) Xét hai số thực a = –1,25 và b = –2,3.

+) So sánh a và b:

Vì 1,25 < 2,3 nên –1,25 > –2,3 hay a > b.

Vậy a > b.

+) So sánh |a| và |b|:

Vì a = –1,25 < 0 nên |a| = |–1,25| = –(–1,25) = 1,25.

Vì b = –2,3 < 0 nên |b| = |–2,3| = –(–2,3) = 2,3.

Do 1,25 < 2,3 nên |a| < |b|.

Vậy |a| < |b|.

b) Vì –12,7  < 0 nên |–12,7| = –(–12,7) = 12,7.

Vì –7,12 < 0 nên |–7,12| = –(–7,12) = 7,12.

Do 12,7 > 7,12  nên |–12,7| > |–7,12|.

Áp dụng quy tắc trong hai số âm, số nào có giá trị tuyệt đối lớn hơn là số bé hơn để so sánh hai số –12,7 và –7,12  như sau:

Do –12,7 và –7,12 là các số âm, lại có |–12,7| > |–7,12| nên –12,7 < –7,12.

Vậy –12,7 < –7,12. 

 

Bài viết liên quan

359