Người xưa đã tính đường kính thân cây theo quy tắc “quân bát, phát tam, tồn ngũ, quân nhị”
Lời giải mở đầu trang 5 Vật lí 10 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7 Tập 1.
Giải Toán 7 Bài 6: Số vô tỉ. Căn bậc hai số học
Vận dụng 1 trang 30 Toán 7 Tập 1: Người xưa đã tính đường kính thân cây theo quy tắc “quân bát, phát tam, tồn ngũ, quân nhị”, tức là lấy chu vi thân cây chia làm 8 phần bằng nhau (quân bát); bớt đi ba phần (phát tam) còn lại 5 phần (tồn ngũ) rồi chia đôi kết quả (quân nhị). Hãy cho biết người xưa đã ước lượng số π bằng bao nhiêu.
Lời giải:
Gọi chu vi thân cây và đường kính thân cây lần lượt là C và d.
Ta đã biết thân cây là hình tròn, khi đó công thức tính chu vi của thân cây là:
C = d.π suy ra π = C : d.
Theo quy tắc “quân bát, phát tam, tồn ngũ, quân nhị” thì chu vi thân cây chia làm 8 phần, bớt đi 3 phần còn lại là 5 phần, rồi chia đôi kết quả ta sẽ tính được đường kính của thân cây.
Do đó khi chia chu vi thân cây thành 8 phần thì ta được mỗi phần chu vi của thân cây là , phần chu vi thân cây bớt đi ba phần là , và 5 phần chu vi thân cây còn lại là
Chia đôi kết quả thu được ở trên thì đường kính thân cây là:
Khi đó số π bằng: π = C : d =
Vậy người xưa đã ước lượng số π bằng
Xem thêm lời giải bài tập Toán 7 Tập 1 Kết nối tri thức hay, chi tiết khác:
HĐ 2 trang 29 Toán 7 Tập 1: Lấy hai trong bốn tam giác nhận được ở trên ghép thành một hình vuông (H.2.2b)
HĐ 3 trang 29 Toán 7 Tập 1: Dùng thước có vạch chia để đo độ dài cạnh hình vuông nhận được trong HĐ2
Vận dụng 1 trang 30 Toán 7 Tập 1: Người xưa đã tính đường kính thân cây theo quy tắc “quân bát, phát tam, tồn ngũ, quân nhị”
Vận dụng 2 trang 30 Toán 7 Tập 1: Sàn thi đấu bộ môn cử tạ có dạng một hình vuông, diện tích 144 m2. Em hãy tính chu vi của sàn thi đấu đó
Bài 2.8 trang 32 Toán 7 Tập 1: Khi tìm căn bậc hai số học của một số tự nhiên ta thường phân tích số đó ra thừa số nguyên tố
Bài 2.9 trang 32 Toán 7 Tập 1: Tính độ dài cạnh của hình vuông có diện tích bằng: a) 81 dm^2; b) 3 600 m^2; c) 1 ha
Bài 2.10 trang 32 Toán 7 Tập 1: Sử dụng máy tính cầm tay tìm căn bậc hai số học của các số sau rồi làm tròn các kết quả với độ chính xác 0,005. a) 3; b) 41; c) 2 021
Bài viết liên quan
- Giải Toán 7 (Kết nối tri thức) Bài 5: Làm quen với số thập phân vô hạn tuần hoàn
- Giải Toán 7 (Kết nối tri thức) Bài 6: Số vô tỉ. Căn bậc hai số học
- Giải Toán 7 (Kết nối tri thức) Bài 7: Tập hợp các số thực
- Giải Toán 7 (Kết nối tri thức) Luyện tập chung trang 37, 38
- Giải Toán 7 (Kết nối tri thức) Bài tập cuối chương 2 trang 39