Cho hình thoi ABCD có cạnh bằng a và có góc A bằng 60 độ. Tìm độ dài các vectơ

Lời giải Bài 3 trang 102 Toán lớp 10 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 10 Tập 1.

451


Giải Toán lớp 10 Bài tập cuối chương 5

Bài 3 trang 102 Toán lớp 10 Tập 1: Cho hình thoi ABCD có cạnh bằng a và có góc A bằng 60°. Tìm độ dài các vectơ sau: p=AB+AD ; u=ABAD ; v=2ABAC.

Lời giải:

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

+) Tính p:

Áp dụng quy tắc hình bình hành ta có AB+AD=AC.

Do đó p=AB+AD=AC.

Hình thoi ABCD có hai đường chéo AC và BD nên AC là tia phân giác của BAD^.

Do đó BAC^=30°.

Tam giác ABC cân tại B nên BAC^=BCA^=30°.

Khi đó ABC^=180°2.30°=120°.

Áp dụng định lí côsin vào tam giác ABC ta có:

AC2 = AB2 + BC2 - 2.AB.BC.cos ABC^

 AC2 = a2 + a2 - 2.a.a.cos 120o

 AC2 = 2a2 + a2

 AC2 = 3a2

 AC = 3a (do AC là độ dài đoạn thẳng nên AC > 0)

Do đó p=3a.

+) Tính u:

Ta có u=ABAD=DB.

Do đó u=DB.

Tam giác ABD cân tại A có BAD^=60° nên tam giác ABD đều.

Do đó BD = AB = a.

Do đó u=DB = a.

+) Tính v:

Gọi H là giao điểm của AC và BD.

H là giao điểm hai đường chéo của hình thoi ABCD nên AC=2AH.

Do đó 2ABAC=2AB2AH=2ABAH=2HB.

Khi đó 2ABAC=2HB=DB=a.

Do đó v=a.

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác: 

Bài viết liên quan

451