Giải Toán 10 (Chân trời sáng tạo) Bài 3: Đường tròn trong mặt phẳng tọa độ

Hoidap.vietjack.com trân trọng giới thiệu: lời giải bài tập Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng tọa độ sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài 3. Mời các bạn đón xem:

397


Giải bài tập Toán 10 Bài 3: Đường tròn trong mặt phẳng tọa độ 

Hoạt động khởi động trang 59 Toán lớp 10 Tập 2: 

Một nông trại tưới nước theo phương pháp vòi phun xoay vòng trung tâm. Cho biết tâm một vòi phun được đặt tại tọa độ (30; 40) và vòi có thể phun xa tối đa 50 m. Làm thế nào để viết phương trình biểu diễn tập hợp các điểm xa nhất mà vòi này có thể phun tới?

Giải Toán 10 Bài 3 (Chân trời sáng tạo): Đường tròn trong mặt phẳng tọa độ  (ảnh 1)

Lời giải:

Phương trình biểu diễn tập hợp các điểm xa nhất mà vòi có thể phun tới là phương trình đường tròn tâm I(30; 40), bán kính R = 50 là: (x − 30)2 + (y − 40)2 = 502.

Hoạt động khám phá 1 trang 59 Toán lớp 10 Tập 2:  Hãy nhắc lại công thức tính khoảng cách giữa hai điểm I(a; b) và M(x; y) trong mặt phẳng Oxy.

Lời giải:

Ta có: IM  = (x – a; y – b)

Khi đó IM = IM = (xa)2+(yb)2 .

Vậy khoảng cách giữa hai điểm I(a; b) và M(x; y) trong mặt phẳng Oxy là IM = (xa)2+(yb)2 .

Thực hành 1 trang 60 Toán lớp 10 Tập 2: Viết phương trình đường tròn (C) trong các trường hợp sau:

a) (C) có tâm O(0; 0), bán kính R = 4;

b) (C) có tâm I(2; − 2), bán kính R = 8;

c) (C) đi qua ba điểm A(1; 4), B(0; 1), C(4; 3).

Lời giải:

a) Phương trình đường tròn (C) có tâm O(0; 0), bán kính R = 4 là: (x – 0)2 + (y – 0)2 = 42 hay  x2 + y2 = 16.

Vậy phương trình đường tròn (C) có tâm O(0; 0), bán kính R = 4 là: x2 + y2 = 16.

b) Phương trình đường tròn (C) có tâm I(2; − 2), bán kính R = 8 là: (x − 2)2 + (y + 2)2 = 82 hay (x − 2)2 + (y + 2)2 = 64.

Vậy phương trình đường tròn (C) có tâm I(2; − 2), bán kính R = 8 là: (x − 2)2 + (y + 2)2 = 64.

c) Gọi I(a; b) là tâm đường tròn (C). Phương trình đường tròn (C) có dạng:

x2 + y2 − 2ax − 2by + c = 0 (a2 + b2 – c > 0).

Vì (C) đi qua ba điểm A(1; 4), B(0; 1), C(4; 3) nên ta có hệ phương trình:

12+422a8b+c=002+122b+c=042+328a6b+c=0 ⇔ 2a8b+c=172b+c=18a6b+c=25  ⇔ a=2b=2c=3

Vậy phương trình đường tròn (C) đi qua ba điểm A(1; 4), B(0; 1), C(4; 3) là: x2 + y2 − 4x − 4y + 3 = 0.

Thực hành 2 trang 61 Toán lớp 10 Tập 2: Phương trình nào sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.

a) x2 + y2 − 2x − 4y – 20 = 0;                       

b) (x + 5)2 + (y + 1)2 = 121;

c) x2 + y2 − 4x − 8y + 5  = 0;                           

d) 2x2 + 2y2 + 6x + 8y – 2 = 0.

Lời giải:

a) Phương trình đã cho có dạng: x2 + y2 − 2ax − 2by + c = 0 với a = 1; b = 2; c = −20.

Ta có: a2 + b2 − c = 12 + 22 + 20 = 25 > 0.

Vậy đây là phương trình đường tròn có tâm I(1; 2) và bán kính R = 25 = 5.

b) Phương trình có dạng (x − a)2 + (y − b)2  = R2 với a = −5; b = −1; R = 11.

Vậy đây là phương trình đường tròn có tâm I(−5; −1) và bán kính R = 11.

c) Phương trình có dạng x2 + y2 − 2ax − 2by + c = 0 với a = 2; b = 4; c = 5.

Ta có: a2 + b2 − c  = 22 + 42 – 5 = 15 > 0.

Vậy đây là phương trình đường tròn có tâm I(2; 4) và bán kính R = 15 .

d) Ta có: 2x2 + 2y2 + 6x + 8y – 2 = 0 ⇔ x2 + y2 + 3x + 4y – 1 = 0.

Phương trình có dạng x2 + y2 − 2ax − 2by + c = 0 với a = 32 ; b = −2; c = −1.

Ta có: a2 + b2 − c  = 322 + (−2)2 + 1 = 294  > 0.

Vậy đây là phương trình đường tròn có tâmI32;2và bán kính R = 292.

Vận dụng 1 trang 61 Toán lớp 10 Tập 2: Theo dữ kiện đã cho trong hoạt động khởi động của bài học, viết phương trình đường tròn biểu diễn tập hợp các điểm xa nhất mà vòi nước có thể phun tới.

Lời giải:

Phương trình biểu diễn tập hợp các điểm xa nhất mà vòi có thể phun tới là phương trình đường tròn tâm I(30; 40), bán kính R = 50 là: (x − 30)2 + (y − 40)2 = 502 hay (x − 30)2 + (y − 40)2 = 2 500

Vậy phương trình biểu diễn tập hợp các điểm xa nhất mà vòi có thể phun tới là (x − 30)2 + (y − 40)2 = 2 500.

Vận dụng 2 trang 61 Toán lớp 10 Tập 2: Một sân khấu đã được thiết lập một hệ trục tọa độ để đạo diễn có thể sắp đặt ánh sáng và xác định vị trí của các diễn viên. Cho biết một đèn chiếu sáng đang rọi trên sân khấu một vùng sáng bên trong đường tròn (C) có phương trình (x – 13)2 + (y − 4)2 = 16.

a) Tìm tọa độ tâm và bán kính của đường tròn (C).

b) Cho biết tọa độ trên sân khấu của ba diễn viên như sau: A(11; 4), B(8; 5), C(15; 5). Diễn viên nào đang được đèn chiếu sáng?

Lời giải:

a) Đường tròn (C): (x – 13)2 + (y − 4)2 = 16 có tâm I(13; 4) và bán kính R = 16 = 4.

Vậy đường tròn (C) có tâm I(13; 4) và bán kính R = 16 = 4.

b) Thay tọa độ điểm A(11; 4) vào phương trình đường tròn (C), ta được:

 (11 − 13)2 + (4 − 4)2 = 4 < 16 

⇒ Diễn viên A đứng trong vùng sáng bên trong đường tròn (C).

Do vậy diễn viên A đang được đèn chiếu sáng.

Thay tọa độ điểm B(8; 5) vào phương trình đường tròn (C), ta được:

 (8 − 13)2 + (5 − 4)2 = 26 >16 

⇒ Diễn viên B đứng ngoài vùng sáng bên trong đường tròn (C).

⇒ Diễn viên B không được chiếu sáng.

Thay tọa độ điểm C(15; 5) vào phương trình đường tròn (C), ta được: 

(15 − 13)2 + (5 − 4)2 = 5 < 16 ⇒ Diễn viên C đứng trong vùng sáng bên trong đường tròn (C).

⇒ Diễn viên C đang được chiếu sáng.

Vậy diễn viên A và C đang được đèn chiếu sáng, diễn viên B không được chiếu sáng.

Hoạt động khám phá 2 trang 61 Toán lớp 10 Tập 2: Cho điểm M0(x0;y0) nằm trên đường tròn (C) tâm I(a; b) và cho điểm M(x; y) tùy ý trong mặt phẳng Oxy. Gọi Δ là tiếp tuyến với (C) tại M0.

Giải Toán 10 Bài 3 (Chân trời sáng tạo): Đường tròn trong mặt phẳng tọa độ  (ảnh 1)

a) Viết tọa độ của hai vectơ M0M và M0I .

b) Viết biểu thức tọa độ tích vô hướng của hai vectơ M0M và  M0I.

c) Phương trình M0M . M0I = 0 là phương trình của đường thẳng nào?

Lời giải:

a) Ta có : M0M  = (x – x0; y – y0); M0I = (a – x0; b – y0)

b) Ta có: M0M . M0I = (x – x0).(a – x0) + (y – y0).(b – y0)

c) Phương trình M0M . M0I = 0 tức là

(x – x0).(a – x0) + (y – y0).(b – y0) = 0 ⇔ (a – x0).(x – x0) + (b – y0).(y – y0) = 0 (1)

Mặt khác:

Vì Δ là tiếp tuyến với (C) tại M0 nên M0I ⊥ Δ

⇒ Đường thẳng Δ nhận M0I  = (a – x0; b – y0) làm vectơ pháp tuyến.

Khi đó, đường thẳng Δ đi qua điểm M0(x0;y0) có vectơ pháp tuyến M0I  = (a – x0; b – y0) có phương trình là: (a – x0).(x – x0) + (b – y0).(y – y0) = 0 (2)

Từ (1) và (2) suy ra M0M . M0I = 0 là phương trình đường thẳng Δ.

Vậy phương trình M0M . M0I = 0 là phương trình của đường thẳng Δ.

Thực hành 3 trang 62 Toán lớp 10 Tập 2: Viết phương trình tiếp tuyến của đường tròn (C): x2 y2 − 2x − 4y − 20 = 0 tại điểm A(4; 6).

Lời giải:

Phương trình đường tròn (C): x2 + y2 − 2x − 4y − 20 = 0 có dạng: x2 + y2 − 2ax − 2by + c = 0 với a = 1; b = 2; c = −20.

Ta có: a2 + b2 − c = 12 + 22 + 20 = 25.

⇒ Đường tròn (C) có tâm I(1; 2) và bán kính R = 25 = 5.

Phương trình tiếp tuyến của (C) tại A(4; 6) là:

(1 − 4)(x − 4) + (2 − 6)(y − 6) = 0 ⇔ −3x − 4y + 36 = 0 ⇔ 3x + 4y – 36 = 0.

Vậy phương trình tiếp tuyến của đường tròn (C): x2 + y2 − 2x − 4y − 20 = 0 tại điểm A(4; 6) là 3x + 4y – 36 = 0.

Vận dụng 3 trang 62 Toán lớp 10 Tập 2: Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình: (− 1)2 + (− 1)2 = 169144 .

Khi người đó vung đĩa đến vị trí điểm M1712;2  thì buông đĩa (Hình 4). Viết phương trình tiếp tuyến của đường tròn (C) tại điểm M.

Giải Toán 10 Bài 3 (Chân trời sáng tạo): Đường tròn trong mặt phẳng tọa độ  (ảnh 1)

Lời giải:

Đường tròn (C): (x − 1)2 + (y − 1)2 = 169144 có tâm I(1; 1).

Phương trình tiếp tuyến của đường tròn (C) tại điểm M là:

(1 − 1712 )(x − 1712 ) + (1 − 2)(y − 2) = 0 ⇔  512x + y − 373144  = 0.

Vậy phương trình tiếp tuyến của đường tròn (C) tại điểm M là 512x + y −373144= 0.

Bài tập 1 trang 62 Toán lớp 10 Tập 2: Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.

a) x2 + y2 − 6x − 8y + 21 = 0;

b) x2 + y2 − 2x + 4y + 2 = 0;

c) x2 + y2 − 3x + 2y + 7 = 0;

d) 2x2 + 2y2 + x + y – 1 = 0.

Lời giải:

a)  Phương trình có dạng x2 + y2 − 2ax − 2by + c = 0 với a = 3, b = 4, c = 21

Ta có: a2 + b2 − c = 32 + 42 – 21 = 4 > 0.

Vậy đây là phương trình đường tròn có tâm I(3; 4) và có bán kính R = 4 = 2.

b) Phương trình có dạng x2 + y2 − 2ax − 2by + c = 0 với a = 1, b = −2, c = 2.

Ta có: a2 + b2 − c = 12 + (−2)2 – 2 = 3 > 0.

Vậy đây là phương trình đường tròn có tâm I(1; −2) và có bán kính R = 3.

c) Phương trình có dạng x2 y2 − 2ax − 2by 0 với a = 32 , b = −1, c = 7.

Ta có: a2 + b2 − c =  322 + (−1)2  −7 = −3,75 < 0.

Vậy đây không phải là phương trình đường tròn.

d) Ta có: 2x2 + 2y2 + x + y – 1 = 0 ⇔ x2 + y2 + 12 x + 12 y − 12  = 0.

Phương trình có dạng x2 + y2 − 2ax − 2by + c = 0 với a = 14 , b =  14 , c = 12

Ta có: a2 + b2 − c = 142 + 142  + 12  = 58  > 0.

Vậy đây là phương trình đường tròn có tâm I14;14và bán kính R = 104.

Bài tập 2 trang 62 Toán lớp 10 Tập 2:  Lập phương trình đường tròn (C) trong các trường hợp sau:

a) (C) có tâm I(1; 5) và có bán kính r = 4;

b) (C) có đường kính MN với M(3; −1) và N(9; 3);

c) (C) có tâm I(2; 1) và tiếp xúc với đường thẳng 5x − 12y +  11= 0;

d) (C) có tâm A(1; −2) và đi qua điểm B(4; −5).

Lời giải:

a) Phương trình đường tròn (C) tâm I(1; 5) và bán kính r = 4 là: (x − 1)2 + (y − 5)2 = 16.

b) Tâm I của đường tròn (C) là trung điểm của MN ⇒ I3+92;1+32  ⇒ I(6; 1)

Ta có: MI  = (6−3; 1+1) = (3; 2)

R = MI = MI = 32+22  = 13 .

Phương trình đường tròn (C) tâm I(6; 1) và bán kính R =  13 là: (x − 6)2 + (y − 1)2 = 13.

c) Gọi ∆ là đường thẳng 5x − 12y +  11= 0.

Vì (C) tiếp xúc với đường thẳng ∆: 5x − 12y + 11 = 0 nên bán kính R = d(I, ∆)

d(I, ∆) = |5.212.1+11|52+(12)2  = 913 .

⇒ R = d(I, ∆) = 913 .

Phương tròn đường tròn (C) tâm I(2; 1) và bán kính R = 913  là: (x − 2)2 + (y − 1)2 = 81169

d) Ta có AB  = (4−1; −5+2) = (3; −3) ⇒ AB = AB  = 32+(3)2  = 32 .

Vì (C) có tâm A(1; −2) và đi qua điểm B(4; −5) nên bán kính R = AB =  32.

Vậy phương trình đường tròn (C) tâm A(1; −2) và bán kính R = 32  là: (x − 1)2 + (y + 2)2 = 18.

Bài tập 3 trang 62 Toán lớp 10 Tập 2:  Lập phương trình đường tròn ngoại tiếp tam giác có tọa độ các đỉnh là:

a) M(2; 5), N(1; 2), P(5; 4);

b) A(0; 6), B(7; 7), C(8; 0).

Lời giải:

a) Phương trình đường tròn có dạng x2 + y2 − 2ax − 2by + c = 0.

Thay tọa độ các đỉnh M(2; 5), N(1; 2), P(5, 4) vào phương trình đường tròn, ta được hệ phương trình: 22+524a10b+c=012+222a4b+c=052+4210a8b+c=0 ⇔ 4a10b+c=292a4b+c=510a8b+c=41 ⇔ a=3b=3c=13

Vậy phương trình đường tròn ngoại tiếp tam giác MNP là: x2 + y2 − 6x − 6y + 13 = 0.

b) Phương trình đường tròn có dạng x2 + y2 − 2ax − 2by + c = 0.

Thay tọa độ các đỉnh A(0; 6), B(7; 7), C(8; 0) vào phương trình đường tròn, ta được hệ phương trình: 6212b+c=072+7214a14b+c=08216a+c=0  ⇔ 12b+c=3614a14b+c=9816a+c=64 ⇔ a=4b=3c=0

Vậy phương trình đường tròn ngoại tiếp tam giác ABC là:  x2 + y2 − 8x − 6y = 0.

Bài tập 4 trang 62 Toán lớp 10 Tập 2:  Lập phương trình đường tròn tiếp xúc với hai trục Ox, Oy và đi qua điểm A(4; 2).

Lời giải:

Gọi I(a; b) là tâm đường tròn (C).

Ta có: R = d(I; Ox) = d(I; Oy) ⇒ R = a = b ⇒ (C) có tâm I(a; a) và bán kính R = a.

⇒ Phương trình đường tròn (C) là: (x − a)2 + (y − a)2 = a2.

Ta có A(4; 2) ∈ (C) nên (4 − a)2 + (2 − a)2 = a2

⇔ 16 − 8a + a2 + 4 − 4a + a2 = a2

⇔ a2 − 12a + 20 = 0 ⇔ a = 10 hoặc a = 2

Với a = 10 thì ta có phương trình đường tròn (C): (x − 10)2 + (y − 10)2 = 100.

Với a = 2 thì ta có phương trình đường tròn (C): (x − 2)2 + (y − 2)2 = 4.

Vậy (C): (x − 10)2+ (y − 10)2 = 100 hoặc (C): (x − 2)2+ (y−2)2=4.

Bài tập 5 trang 63 Toán lớp 10 Tập 2:  Cho đường tròn (C) có phương trình x2 + y2  2x  4y  20 = 0.

a) Chứng tỏ rằng điểm M(4; 6) thuộc đường tròn (C).

b) Viết phương trình tiếp tuyến của (C) tại điểm M(4; 6).

c) Viết phương trình tiếp tuyến của (C) song song với đường thẳng 4x + 3y + 2022 = 0.

Lời giải:

a) Thay tọa độ điểm M vào phương trình đường tròn (C), ta có: 

42 + 62 − 2.4 − 4.6 – 20 = 0

⇒ M ∈ (C).

Vậy điểm M(4; 6) thuộc đường tròn (C).

b) Đường tròn (C) x2 + y2 − 2x − 4y – 20 = 0 có a = 1; b = 2; c = −20.

Khi đó R = 12+22+20  = 5 và tâm I(1; 2).

Phương trình tiếp tuyến của (C) tại M(4; 6) là: 

(1 − 4)(x − 4) + (2 − 6)(y − 6) = 0 ⇔ −3x − 4y + 36 = 0 ⇔ 3x + 4y – 36 = 0.

Vậy phương trình tiếp tuyến của (C) tại điểm M(4; 6) là 3x + 4y – 36 = 0.

c) Tiếp tuyến Δ của (C) song song với đường thẳng 4x + 3y + 2022 = 0 có dạng

Δ: 4x + 3y + c = 0 (với c ≠ 2022)

Ta có: d(I; Δ) = R ⇔ 4.1+3.2+c42+32 = 5 ⇔ 10+c5 = 5 ⇔ |10 + c| = 25 ⇔ c = 15 hoặc c = −35.

Vậy phương trình tiếp tuyến của (C) song song với đường thẳng 4x + 3y + 2022 = 0 là:Δ: 4x + 3y + 15 = 0 hoặc Δ: 4x + 3y – 35 = 0.

Bài tập 6. trang 63 Toán lớp 10 Tập 2: Một cái cổng hình bán nguyệt rộng 8,4m, cao 4,2m như Hình 5. Mặt đường dưới cổng được chia thành hai làn xe ra vào.

a) Viết phương trình mô phỏng cái cổng.

b) Một chiếc xe tải rộng 2,2 m và cao 2,6m đi đúng làn đường quy định có thể đi qua cổng mà không làm hư hỏng cổng hay không?

Giải Toán 10 Bài 3 (Chân trời sáng tạo): Đường tròn trong mặt phẳng tọa độ  (ảnh 1)

Lời giải:

a) Chọn hệ tọa độ Oxy như hình vẽ.

Giải Toán 10 Bài 3 (Chân trời sáng tạo): Đường tròn trong mặt phẳng tọa độ  (ảnh 1)

Ta có phương trình đường tròn tâm O(0; 0) bán kính R = 8,4 : 2 = 4,2 là: 

x2 + y2 = 17,64.

Vậy phương trình mô phỏng cái cổng là: x2 + y2 = 17,64 (y ≥ 0)

b) Chiếc xe tải rộng 2,2 m và cao 2,6m tương ứng với x = 2,2 và chiều cao của cổng tại x = 2,2 phải lớn hơn 2,6 thì xe tải mới đi qua được.

Thay x = 2,2 vào phương trình đường tròn, ta được 2,22 + y2 = 17,64

⇒ y2 = 17,64 – 2,22 = 12,8

Vì y > 0 nên y = 12,8  ≈ 3,6 > 2,6.

Vậy xe tải rộng 2,2m và cao 2,6m đi đúng làn đường quy định có thể đi qua cổng mà không làm hư hỏng cổng.

Bài viết liên quan

397