Cho tam giác ABC có BC = a, AC = b, AB = c và (I; r) là đường tròn nội tiếp tam giác

Lời giải Khám phá 4 trang 70 Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

296


Giải Toán lớp 10 Bài 2: Định lí côsin và định lí sin

Khám phá 4 trang 70 Toán lớp 10 Tập 1Cho tam giác ABC có BC = a, AC = b, AB = c và (I; r) là đường tròn nội tiếp tam giác (Hình 11).

Giải Toán 10 Bài 2: Định lí côsin và định lí sin - Chân trời sáng tạo (ảnh 1)

a) Tính diện tích các tam giác IBC, IAC, IAB theo r và a, b, c.

b) Dùng công thức trên để chứng minh công thức tính diện tích tam giác ABC:

S=r(a+b+c)2

Lời giải:

a)SIBC=12r.BC=12ar

Tương tự ta có:

SIAB=12crSIAC=12br

b) SABC=SIBC+SIAC+SIAB=12ar+12br+12cr=r(a+b+c)2 (đpcm)

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài viết liên quan

296