Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu

Lời giải Bài 3 trang 125 Toán lớp 10 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 10 Tập 1.

321


Giải Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Bài 3 trang 125 Toán lớp 10 Tập 1: Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:

a)

Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu

b)

Giải Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Số trung bình của mẫu số liệu trên là:

2.10+1.20+1.20+2.1010+20+30+20+10 = 0

Phương sai của mẫu số liệu trên là:

190[10 . (-2)2 + 20 . (-1)2 + 20 . 12 + 10 . 22] =43 .

Độ lệch chuẩn của mẫu số liệu trên là:

43=23.

Khoảng biến thiên của mẫu số liệu trên là: 2 - (-2) = 4.

Cỡ mẫu bằng 90 nên tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 45 và 46 của mẫu số liệu là Q2=12(0 + 0) = 0.

Tứ phân vị thứ nhất là trung vị của mẫu gồm các giá trị – 2; – 1; 0 với cỡ mẫu 45 nên tứ phân vị thứ nhất là số liệu thứ 23 trong mẫu số liệu là Q1 = -1.

Tứ phân vị thứ ba là trung vị của mẫu gồm các giá trị 0; 1; 2 với cỡ mẫu 45 nên tứ phân vị thứ ba là số liệu thứ 78 trong mẫu số liệu là Q3 = 1.

Khoảng tứ phân vị của mẫu số liệu trên là: 1 - (-1) = 2.

b) Gọi cỡ mẫu là 10.

Khi đó giá trị 0 xuất hiện 0,1 . 10 = 1 lần, giá trị 1 xuất hiện 0,2 . 10 = 2 lần, giá trị 2 xuất hiện 0,4 . 10 = 4 lần, giá trị 3 xuất hiện 0,2 . 10 = 2 lần, giá trị 4 xuất hiện 0,1 . 10 = 1 lần.

Số trung bình của mẫu số liệu trên là:

 1.2+2.4+3.2+4.110= 2.

Phương sai của mẫu số liệu trên là:

110(2 . 12 + 4 . 22 + 2 . 32 + 1 . 42- 22 = 1,2.

Độ lệch chuẩn của mẫu số liệu trên là:

1,2=305.

Khoảng biến thiên của mẫu số liệu trên là: 4 - 0 = 4.

Cỡ mẫu bằng 10 nên tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 5 và thứ 6 trong mẫu số liệu là Q2 12= (2 + 2) = 2.

Tứ phân vị thứ nhất là trung vị của mẫu 0; 1; 1; 2; 2 với cỡ mẫu bằng 5 là số liệu thứ 3 trong mẫu số liệu là Q1 = 1.

Tứ phân vị thứ nhất là trung vị của mẫu 2; 2; 3; 3; 4 với cỡ mẫu bằng 5 là số liệu thứ 8 trong mẫu số liệu là Q3 = 3.

Khoảng tứ phân vị của mẫu số liệu trên là 3 - 1 = 2.

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài viết liên quan

321