Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một sản phẩm
Lời giải Bài 4 trang 118 Toán lớp 10 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 10 Tập 1.
Giải Toán lớp 10 Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 4 trang 118 Toán lớp 10 Tập 1: Trong một cuộc thi nghề, người ta ghi lại thời gian hoàn thành một sản phẩm của một số thí sinh ở bảng sau:
a) Hãy tìm số trung bình, tứ phân vị và mốt của thời gian thi nghề của các thí sinh trên.
b) Năm ngoái, thời gian thi của các thí sinh có số trung bình và trung vị đều bằng 7. Bạn hãy so sánh thời gian thi nói chung của các thí sinh trong hai năm.
Lời giải:
a) Số trung bình cộng về thời gian thi nghề của các thí sinh là:
≈ 9,08.
Cỡ mẫu bằng 12 nên tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 6 và thứ 7 trong mẫu là Q2= (7 + 7) = 7.
Tứ phân vị thứ nhất là trung vị của mẫu 5; 6; 6; 6; 7; 7 với cỡ mẫu là 6 bằng trung bình cộng của số liệu thứ 3 và thứ 4 trong mẫu là Q1 = (6 + 6) = 6.
Tứ phân vị thứ ba là trung vị của mẫu 7; 7; 7; 8; 8; 35 với cỡ mẫu là 6 bằng trung bình cộng của số liệu thứ 9 và 10 trong mẫu là Q3= (7 + 8) = 7,5.
Giá trị 7 xuất hiện nhiều nhất nên mốt của thời gian thi nghề của các thí sinh là 7.
b) Năm ngoái, thời gian thi của các thí sinh có số trung bình và trung vị đều bằng 7.
Năm nay, thời gian thi của các thí sinh có số trung bình bằng 9,08 và trung vị bằng 7.
Do đó thời gian thi của các thí sinh năm nay nhiều hơn thời gian thi của các thí sinh năm ngoái.
Bài viết liên quan
- Giải Toán 10 (Chân trời sáng tạo) Bài 1: Số gần đúng và sai số
- Giải Toán 10 (Chân trời sáng tạo) Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
- Giải Toán 10 (Chân trời sáng tạo) Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
- Giải Toán 10 (Chân trời sáng tạo) Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
- Giải Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 6