Cho tứ giác ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD

Lời giải Bài 2 trang 97 Toán lớp 10 Tập 1 Toán 10 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 10 Tập 1.

323


Giải Toán lớp 10 Bài 3: Tích của một số với một vectơ

Bài 2 trang 97 Toán lớp 10 Tập 1: Cho tứ giác ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD. Chứng minh rằng:

a) AC+BD=2MN;

b) AC+BD=BC+AD.

Lời giải:

Giải Toán 10 Bài 3: Tích của một số với một vectơ - Chân trời sáng tạo (ảnh 1)

a) Gọi O là giao điểm hai đường chéo của tứ giác ABCD.

Do M là trung điểm của AB nên OA+OB=2OM.

Do đó AO+BO=2MO.

Do N là trung điểm của CD nên OC+OD=2ON.

Do đó AO+BO+OC+OD=2MO+2ON.

hay AO+OC+BO+OD=2MN.

Do đó AC+BD=2MN.

b) Ta có AD=AC+CD

Do đó BC+AD=BC+AC+CD=AC+BC+CD=AC+BD.

Vậy AC+BD=BC+AD.

Bài viết liên quan

323