Cho hình bình hành ABCD có O là giao điểm của hai đường chéo và một điểm M tùy ý

Lời giải Bài 1 trang 93 Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

417


Giải bài tập Toán 10 Bài 2: Tổng và hiệu của hai vectơ

Bài 1 trang 93 Toán lớp 10 Tập 1Cho hình bình hành ABCD có O là giao điểm của hai đường chéo và một điểm M tùy ý. Chứng minh rằng:

a) BA+DC=0;

b) MA+MC=MB+MD

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

a) Do ABCD là hình bình hành nên AB // CD, AB = CD.

Ta thấy hai vectơ BA và DC ngược hướng và BA=DC nên DC=BA.

Do đó BA+DC=BABA=0.

b) Do O là giao điểm hai đường chéo của hình bình hành ABCD nên O là trung điểm của AC và BD.

Do O là trung điểm của AC nên OA+OC=0.

Do O là trung điểm của BD nên OB+OD=0.

Ta có MA+MC=MO+OA+MO+OC=2MO+OA+OC=2MO.

MB+MD=MO+OB+MO+OD=2MO+OB+OD=2MO.

Do đó MA+MC=MB+MD.

Bài viết liên quan

417